Multivariate pattern classification of brain white matter connectivity predicts classic trigeminal neuralgia

神经影像学 白质 磁共振弥散成像 三叉神经痛 楔前 神经科学 神经病理性疼痛 体素 多元统计 异常 脑岛 心理学 医学 认知 磁共振成像 计算机科学 放射科 机器学习 精神科
作者
Jidan Zhong,David Qixiang Chen,Peter Shih-Ping Hung,Dave J. Hayes,Kevin E. Liang,Karen D. Davis,Mojgan Hodaie
出处
期刊:Pain [Lippincott Williams & Wilkins]
卷期号:159 (10): 2076-2087 被引量:42
标识
DOI:10.1097/j.pain.0000000000001312
摘要

Abstract Trigeminal neuralgia (TN) is a severe form of chronic facial neuropathic pain. Increasing interest in the neuroimaging of pain has highlighted changes in the root entry zone in TN, but also group-level central nervous system gray and white matter (WM) abnormalities. Group differences in neuroimaging data are frequently evaluated with univariate statistics; however, this approach is limited because it is based on single, or clusters of, voxels. By contrast, multivariate pattern analyses consider all the model's neuroanatomical features to capture a specific distributed spatial pattern. This approach has potential use as a prediction tool at the individual level. We hypothesized that a multivariate pattern classification method can distinguish specific patterns of abnormal WM connectivity of classic TN from healthy controls (HCs). Diffusion-weighted scans in 23 right-sided TN and matched controls were processed to extract whole-brain interregional streamlines. We used a linear support vector machine algorithm to differentiate interregional normalized streamline count between TN and HC. This algorithm successfully differentiated between TN and HC with an accuracy of 88%. The structural pattern emphasized WM connectivity of regions that subserve sensory, affective, and cognitive dimensions of pain, including the insula, precuneus, inferior and superior parietal lobules, and inferior and medial orbital frontal gyri. Normalized streamline counts were associated with longer pain duration and WM metric abnormality between the connections. This study demonstrates that machine-learning algorithms can detect characteristic patterns of structural alterations in TN and highlights the role of structural brain imaging for identification of neuroanatomical features associated with neuropathic pain disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助zhq采纳,获得30
2秒前
2秒前
xxx完成签到,获得积分10
2秒前
pp完成签到,获得积分10
3秒前
4秒前
科研通AI5应助李先生采纳,获得10
4秒前
NexusExplorer应助nini采纳,获得10
4秒前
4秒前
无辜的惜寒完成签到,获得积分10
5秒前
科研通AI6应助无辜凝天采纳,获得30
6秒前
叮当猫完成签到,获得积分10
7秒前
7秒前
果果糖YLJ发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
赘婿应助霸气若男采纳,获得30
8秒前
鳕鱼完成签到,获得积分10
8秒前
8秒前
9秒前
失眠白曼完成签到,获得积分10
9秒前
10秒前
皮蛋瘦肉周完成签到,获得积分10
11秒前
SciGPT应助张宇琪采纳,获得10
11秒前
Auditor完成签到,获得积分10
11秒前
ada完成签到,获得积分10
11秒前
13秒前
JamesPei应助复杂大象采纳,获得10
13秒前
我爱科研发布了新的文献求助10
13秒前
勤奋丹亦发布了新的文献求助10
13秒前
李健应助徐澄澄采纳,获得10
13秒前
孤独半青发布了新的文献求助10
14秒前
每天都要看文献完成签到,获得积分10
14秒前
14秒前
RLwan发布了新的文献求助10
14秒前
梁梁完成签到,获得积分10
15秒前
英姑应助失眠白曼采纳,获得10
15秒前
15秒前
吱吱发布了新的文献求助10
16秒前
出口的胖猪完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4418436
求助须知:如何正确求助?哪些是违规求助? 3899558
关于积分的说明 12126535
捐赠科研通 3545437
什么是DOI,文献DOI怎么找? 1945647
邀请新用户注册赠送积分活动 985840
科研通“疑难数据库(出版商)”最低求助积分说明 882215