Chiller Fault Diagnosis Based on VAE-Enabled Generative Adversarial Networks

自编码 人工智能 计算机科学 分类器(UML) 稳健性(进化) 机器学习 训练集 深度学习 模式识别(心理学) 数据挖掘 生物化学 基因 化学
作者
Ke Yan,Jianye Su,Jing Huang,Yuchang Mo
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 387-395 被引量:86
标识
DOI:10.1109/tase.2020.3035620
摘要

Artificial intelligence (AI)-enhanced automated fault diagnosis (AFD) has become increasingly popular for chiller fault diagnosis with promising classification performance. In practice, a sufficient number of fault samples are required by the AI methods in the training phase. However, faulty training samples are generally much more difficult to be collected than normal training samples. Data augmentation is introduced in these scenarios to enhance the training data set with synthetic data. In this study, a variational autoencoder-based conditional Wasserstein GAN with gradient penalty (CWGAN-GP-VAE) is proposed to diagnose various faults for chillers. A detailed comparative study has been conducted with real-world fault data samples to verify the effectiveness and robustness of the proposed methodology. Note to Practitioners—This work attacks the fact that faulty training samples are usually much harder to be collected than the normal training samples in the practice of chiller automated fault diagnosis (AFD). Modern supervised learning chiller AFD relies on a sufficient number of faulty training samples to train the classifier. When the number of faulty training samples is insufficient, the conventional AFD methods fail to work. This study proposed a variational autoencoder-based conditional Wasserstein GAN with gradient penalty (CWGAN-GP-VAE) framework for generating synthetic faulty training samples to enrich the training data set for machine learning-based AFD methods. The proposed algorithm has been carefully designed, implemented, and practically proved to be more effective than the existing methods in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助老实紫萱采纳,获得10
刚刚
clm完成签到 ,获得积分10
1秒前
共享精神应助kingJames采纳,获得10
1秒前
oneday完成签到,获得积分10
2秒前
2秒前
汉堡包应助lin采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
6秒前
不想干活应助呆萌的书包采纳,获得10
7秒前
小王完成签到,获得积分10
8秒前
田様应助cx采纳,获得10
8秒前
科研通AI5应助聪慧凡蕾采纳,获得10
10秒前
10秒前
10秒前
赘婿应助殷勤的紫槐采纳,获得10
11秒前
小王发布了新的文献求助10
17秒前
李李我关注了科研通微信公众号
18秒前
名字和题目一样难完成签到 ,获得积分10
19秒前
20秒前
yyy完成签到,获得积分20
21秒前
22秒前
DELI完成签到 ,获得积分10
24秒前
完美世界应助慕乐珍采纳,获得10
24秒前
科研通AI6应助真三采纳,获得10
25秒前
cx发布了新的文献求助10
25秒前
答辩完成签到,获得积分10
25秒前
单薄乐珍完成签到 ,获得积分0
26秒前
在水一方应助easyaction采纳,获得10
27秒前
yyy关注了科研通微信公众号
28秒前
28秒前
28秒前
SciGPT应助小王采纳,获得10
28秒前
30秒前
北三十发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
34秒前
34秒前
35秒前
AAA完成签到,获得积分10
37秒前
37秒前
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
New Essays on Normative Realism 600
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4218177
求助须知:如何正确求助?哪些是违规求助? 3752088
关于积分的说明 11798322
捐赠科研通 3416784
什么是DOI,文献DOI怎么找? 1875171
邀请新用户注册赠送积分活动 928984
科研通“疑难数据库(出版商)”最低求助积分说明 837885