Self-Supervised Learning of Graph Neural Networks: A Unified Review

计算机科学 人工智能 分类 机器学习 人工神经网络 图形 试验台 理论计算机科学 计算机网络
作者
Yaochen Xie,Xu Zhao,Jingtun Zhang,Zhengyang Wang,Shuiwang Ji
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (2): 2412-2429 被引量:210
标识
DOI:10.1109/tpami.2022.3170559
摘要

Deep models trained in supervised mode have achieved remarkable success on a variety of tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a new paradigm for making use of large amounts of unlabeled samples. SSL has achieved promising performance on natural language and image learning tasks. Recently, there is a trend to extend such success to graph data using graph neural networks (GNNs). In this survey, we provide a unified review of different ways of training GNNs using SSL. Specifically, we categorize SSL methods into contrastive and predictive models. In either category, we provide a unified framework for methods as well as how these methods differ in each component under the framework. Our unified treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms. We also summarize different SSL settings and the corresponding datasets used in each setting. To facilitate methodological development and empirical comparison, we develop a standardized testbed for SSL in GNNs, including implementations of common baseline methods, datasets, and evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
动漫大师发布了新的文献求助10
1秒前
J_Man发布了新的文献求助30
2秒前
suiting发布了新的文献求助10
3秒前
科研通AI2S应助博修采纳,获得10
3秒前
开朗大雁发布了新的文献求助10
3秒前
煜清清完成签到 ,获得积分10
4秒前
4秒前
热心白凝发布了新的文献求助10
4秒前
4秒前
5秒前
大饼卷肉完成签到,获得积分10
6秒前
11完成签到,获得积分20
6秒前
kun完成签到 ,获得积分10
7秒前
Dandraine发布了新的文献求助10
7秒前
DW发布了新的文献求助10
9秒前
9秒前
Li发布了新的文献求助10
9秒前
不二完成签到 ,获得积分10
9秒前
suiting完成签到,获得积分10
9秒前
天天快乐应助开朗大雁采纳,获得10
10秒前
11秒前
Run完成签到,获得积分10
11秒前
poegtam完成签到,获得积分10
11秒前
11秒前
zys完成签到,获得积分10
13秒前
科研通AI5应助Treasure采纳,获得10
13秒前
研研研完成签到,获得积分10
14秒前
ddrose发布了新的文献求助10
14秒前
kekekelili完成签到,获得积分10
14秒前
三笠完成签到,获得积分10
14秒前
伊可完成签到 ,获得积分10
14秒前
摸俞完成签到,获得积分10
15秒前
活泼鸵鸟完成签到,获得积分20
15秒前
土狗完成签到,获得积分10
15秒前
16秒前
平常的毛豆应助DW采纳,获得10
17秒前
精明曼荷发布了新的文献求助10
17秒前
18秒前
Agan完成签到,获得积分10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798743
求助须知:如何正确求助?哪些是违规求助? 3344441
关于积分的说明 10320116
捐赠科研通 3060952
什么是DOI,文献DOI怎么找? 1679908
邀请新用户注册赠送积分活动 806780
科研通“疑难数据库(出版商)”最低求助积分说明 763386