Adaptive MultiScale Segmentations for Hyperspectral Image Classification

高光谱成像 模式识别(心理学) 计算机科学 人工智能 比例(比率) 分割 图像分割 像素 集合(抽象数据类型) 数据集 计算机视觉 地理 地图学 程序设计语言
作者
Qingming Leng,Haiou Yang,Junjun Jiang,Qi Tian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (8): 5847-5860 被引量:17
标识
DOI:10.1109/tgrs.2020.2971716
摘要

The number of superpixels (i.e., segmentation scale) is crucial for spectral-spatial hyperspectral image (HSI) classification. Existing methods always set the segmentation scale through a manually experimental strategy, which is time-consuming and unsuitable for various complicated practical applications. The information fusion of complementary multiple scales is proven to be more effective than the single scale for HSI classification, but the scale level is still set manually. In this article, we propose a novel adaptive multiscale segmentations (AMSs) method that can automatically provide a set of suitable scales that are adapted to different hyperspectral data. Specifically, based on the assumption that the segmentation scale of HSI is related to the image complexity itself, the texture ratio and the number of land cover classes are used to examine a candidate scale pool. A good scale means that it contains a small spectral difference between pixels within the same superpixel (intrasuperpixel discrimination index) and a large discrepancy between neighboring superpixels (intersuperpixel discrimination index). Thus, an intra-interscale discrimination index is defined and applied to depict the characteristics of the scale. Then, the scale with the best intra-inter discrimination index, which usually has satisfactory performance, is treated as the initially selected scale. The remaining suitable scales are iteratively compared with the selected ones and then added to the target scale pool, until the newly added scale can no longer provide significantly complementary information. Extensive experimental results on three HSI data sets have demonstrated the effectiveness of the proposed AMS when compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suchui发布了新的文献求助10
刚刚
Ma发布了新的文献求助10
1秒前
amy完成签到,获得积分10
2秒前
缓慢的豌豆完成签到 ,获得积分10
3秒前
结实的以莲完成签到,获得积分10
5秒前
lay完成签到,获得积分10
7秒前
8秒前
10秒前
11秒前
帅气小霜发布了新的文献求助10
12秒前
ssss发布了新的文献求助10
16秒前
科研通AI2S应助无情吐司采纳,获得10
16秒前
suchui完成签到,获得积分10
17秒前
不安的朋友完成签到 ,获得积分10
20秒前
zhang完成签到,获得积分10
23秒前
ssss完成签到,获得积分10
24秒前
Orange应助等待的雪碧采纳,获得10
24秒前
欢佳欢发布了新的文献求助10
25秒前
29秒前
王淳完成签到 ,获得积分10
29秒前
32秒前
科研通AI5应助无情吐司采纳,获得10
34秒前
情怀应助坦率的草丛采纳,获得10
35秒前
35秒前
ding应助zzuwxj采纳,获得10
36秒前
shidewu完成签到,获得积分10
36秒前
神勇的豁完成签到,获得积分20
38秒前
Bart9999发布了新的文献求助30
39秒前
41秒前
科研通AI2S应助DHL采纳,获得10
43秒前
Bart9999完成签到,获得积分10
46秒前
neck完成签到 ,获得积分10
48秒前
Jasper应助爱听歌笑寒采纳,获得10
48秒前
飞天817完成签到,获得积分10
49秒前
50秒前
51秒前
Chen发布了新的文献求助10
53秒前
飞飞完成签到 ,获得积分10
53秒前
欢佳欢完成签到,获得积分10
53秒前
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780433
求助须知:如何正确求助?哪些是违规求助? 3325869
关于积分的说明 10224534
捐赠科研通 3040916
什么是DOI,文献DOI怎么找? 1669147
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758653