数学
去模糊
正规化(语言学)
凸函数
凸性
收敛速度
凸优化
回溯
应用数学
算法
数学优化
正多边形
图像复原
图像(数学)
计算机科学
图像处理
几何学
频道(广播)
人工智能
金融经济学
经济
计算机网络
作者
Simone Rebegoldi,Luca Calatroni
摘要
We consider a variable metric and inexact version of the fast iterative soft-thresholding algorithm (FISTA) type algorithm considered in [L. Calatroni and A. Chambolle, SIAM J. Optim., 29 (2019), pp. 1772--1798; A. Chambolle and T. Pock, Acta Numer., 25 (2016), pp. 161--319] for the minimization of the sum of two (possibly strongly) convex functions. The proposed algorithm is combined with an adaptive (nonmonotone) backtracking strategy, which allows for the adjustment of the algorithmic step-size along the iterations in order to improve the convergence speed. We prove a linear convergence result for the function values, which depends on both the strong convexity moduli of the two functions and the upper and lower bounds on the spectrum of the variable metric operators. We validate the proposed algorithm, named Scaled Adaptive GEneralized FISTA (SAGE-FISTA), on exemplar image denoising and deblurring problems where edge-preserving total variation (TV) regularization is combined with Kullback--Leibler-type fidelity terms, as is common in applications where signal-dependent Poisson noise is assumed in the data.
科研通智能强力驱动
Strongly Powered by AbleSci AI