已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of Machine Learning Models for Predicting Postoperative Delayed Remission in Patients With Cushing’s Disease

机器学习 人工智能 医学 背景(考古学) 分级(工程) 阿达布思 特征选择 计算机科学 支持向量机 古生物学 土木工程 工程类 生物
作者
Yanghua Fan,Yichao Li,Xinjie Bao,Huijuan Zhu,Lin Lü,Yong Yao,Yansheng Li,Mingliang Su,Feng Feng,Shanshan Feng,Ming Feng,Renzhi Wang
出处
期刊:The Journal of Clinical Endocrinology and Metabolism [Oxford University Press]
卷期号:106 (1): e217-e231 被引量:28
标识
DOI:10.1210/clinem/dgaa698
摘要

Abstract Context Postoperative hypercortisolemia mandates further therapy in patients with Cushing’s disease (CD). Delayed remission (DR) is defined as not achieving postoperative immediate remission (IR), but having spontaneous remission during long-term follow-up. Objective We aimed to develop and validate machine learning (ML) models for predicting DR in non-IR patients with CD. Methods We enrolled 201 CD patients, and randomly divided them into training and test datasets. We then used the recursive feature elimination (RFE) algorithm to select features and applied 5 ML algorithms to construct DR prediction models. We used permutation importance and local interpretable model–agnostic explanation (LIME) algorithms to determine the importance of the selected features and interpret the ML models. Results Eighty-eight (43.8%) of the 201 CD patients met the criteria for DR. Overall, patients who were younger, had a low body mass index, a Knosp grade of III–IV, and a tumor not found by pathological examination tended to achieve a lower rate of DR. After RFE feature selection, the Adaboost model, which comprised 18 features, had the greatest discriminatory ability, and its predictive ability was significantly better than using Knosp grading and postoperative immediate morning serum cortisol (PoC). The results obtained from permutation importance and LIME algorithms showed that preoperative 24-hour urine free cortisol, PoC, and age were the most important features, and showed the reliability and clinical practicability of the Adaboost model in DC prediction. Conclusions Machine learning–based models could serve as an effective noninvasive approach to predicting DR, and could aid in determining individual treatment and follow-up strategies for CD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vungocbinh应助瀚子采纳,获得50
刚刚
27小天使发布了新的文献求助30
刚刚
1秒前
繁荣的帽子完成签到,获得积分10
1秒前
3秒前
筱奇发布了新的文献求助10
5秒前
LEL发布了新的文献求助10
6秒前
6秒前
斯文败类应助55采纳,获得10
6秒前
6秒前
潇洒的盼望完成签到 ,获得积分10
7秒前
8秒前
8秒前
年轻纸飞机完成签到,获得积分10
9秒前
科研狗发布了新的文献求助10
10秒前
luole发布了新的文献求助20
10秒前
11秒前
NightGlow发布了新的文献求助10
11秒前
paradise发布了新的文献求助10
11秒前
12秒前
小蘑菇应助忆寒采纳,获得10
14秒前
久等雨归完成签到,获得积分10
14秒前
14秒前
我是老大应助JX采纳,获得10
15秒前
姜太公发布了新的文献求助10
15秒前
啦啦啦发布了新的文献求助10
15秒前
在水一方应助NightGlow采纳,获得10
15秒前
Liuxinyan发布了新的文献求助10
15秒前
冷静新烟完成签到,获得积分20
16秒前
幽默的惮发布了新的文献求助10
18秒前
19秒前
社会主义接班人完成签到 ,获得积分10
19秒前
莫安完成签到,获得积分10
21秒前
21秒前
22秒前
赘婿应助姜太公采纳,获得10
22秒前
23秒前
23秒前
lv完成签到,获得积分10
24秒前
筱奇完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
A coordinated control system for truck cabin suspension based on model predictive control 420
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4680647
求助须知:如何正确求助?哪些是违规求助? 4056694
关于积分的说明 12543735
捐赠科研通 3751469
什么是DOI,文献DOI怎么找? 2071889
邀请新用户注册赠送积分活动 1101072
科研通“疑难数据库(出版商)”最低求助积分说明 980388