Task Allocation for Mobile Crowdsensing with Deep Reinforcement Learning

计算机科学 强化学习 基线(sea) 任务(项目管理) 人工智能 分布式计算 拥挤感测 机器学习 计算机安全 海洋学 地质学 经济 管理
作者
Xi Tao,Wei Song
标识
DOI:10.1109/wcnc45663.2020.9120489
摘要

Mobile crowdsensing (MCS) is a new and promising paradigm of data collection in large-scale sensing and computing. A large group of users with mobile devices are recruited in a specific area to accomplish sensing tasks. An essential aspect of an MCS application is task allocation, which aims to efficiently assign sensing tasks to the recruited workers. Due to various resource and quality constraints, the MCS task allocation problem is often an NP-hard optimization problem. Traditional greedy or heuristic approaches are usually subject to performance loss in a certain degree so as to maintain tractability or accommodate special requirements such as incentive constraints. In this paper, we attempt to employ a deep reinforcement learning method to search for a more efficient task allocation solution. Specifically, we use a double deep Q-network (DDQN) to solve the task allocation problem as a path-planning problem with time windows. Our formulated problem takes into account location-dependency and time-sensitivity of sensing tasks, as well as the resource limits of workers in terms of maximum travelling distances. Simulations are conducted to compare the DDQN-based solution with two standard baseline solutions. The results show that our proposed solution outperforms the baseline solutions in terms of the platform's profit and the coverage of tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
3秒前
荷包蛋发布了新的文献求助20
3秒前
充电宝应助dsfdsaf采纳,获得10
3秒前
4秒前
Psycho发布了新的文献求助30
6秒前
爆米花应助123456采纳,获得10
6秒前
完美世界应助123456采纳,获得10
6秒前
lulu发布了新的文献求助10
6秒前
小二发布了新的文献求助10
6秒前
4114完成签到,获得积分10
7秒前
seven完成签到 ,获得积分10
8秒前
喜悦发布了新的文献求助10
9秒前
今后应助根系内生菌采纳,获得10
10秒前
哈哈发布了新的文献求助10
10秒前
赘婿应助俭朴凝丹采纳,获得10
10秒前
lynn发布了新的文献求助10
11秒前
11秒前
爆米花应助纯真的十三采纳,获得10
11秒前
12秒前
甜甜圈完成签到,获得积分10
13秒前
领导范儿应助喜悦采纳,获得10
13秒前
搜集达人应助浮希颜采纳,获得10
14秒前
Criminology34应助风语村采纳,获得10
15秒前
甜甜圈发布了新的文献求助10
16秒前
16秒前
菜芽君完成签到,获得积分10
16秒前
小李哦发布了新的文献求助10
17秒前
薄荷心完成签到 ,获得积分10
18秒前
Akim应助努努采纳,获得10
19秒前
20秒前
20秒前
喜悦完成签到,获得积分20
20秒前
WaEi发布了新的文献求助10
20秒前
正直的雨泽完成签到,获得积分10
20秒前
wanci应助雄杨采纳,获得10
21秒前
直击灵魂完成签到 ,获得积分10
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300721
求助须知:如何正确求助?哪些是违规求助? 4448507
关于积分的说明 13846121
捐赠科研通 4334281
什么是DOI,文献DOI怎么找? 2379527
邀请新用户注册赠送积分活动 1374643
关于科研通互助平台的介绍 1340312