Autoencoded DNA methylation data to predict breast cancer recurrence: Machine learning models and gene-weight significance

计算机科学 机器学习 人工智能 甲基化 肿瘤科 表观遗传学 基因
作者
Laura Macías-García,María Martínez-Ballesteros,José María Luna-Romera,José M. García-Heredia,Jorge García-Gutiérrez,José C. Riquelme-Santos
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:110: 101976- 被引量:7
标识
DOI:10.1016/j.artmed.2020.101976
摘要

Breast cancer is the most frequent cancer in women and the second most frequent overall after lung cancer. Although the 5-year survival rate of breast cancer is relatively high, recurrence is also common which often involves metastasis with its consequent threat for patients. DNA methylation-derived databases have become an interesting primary source for supervised knowledge extraction regarding breast cancer. Unfortunately, the study of DNA methylation involves the processing of hundreds of thousands of features for every patient. DNA methylation is featured by High Dimension Low Sample Size which has shown well-known issues regarding feature selection and generation. Autoencoders (AEs) appear as a specific technique for conducting nonlinear feature fusion. Our main objective in this work is to design a procedure to summarize DNA methylation by taking advantage of AEs. Our proposal is able to generate new features from the values of CpG sites of patients with and without recurrence. Then, a limited set of relevant genes to characterize breast cancer recurrence is proposed by the application of survival analysis and a pondered ranking of genes according to the distribution of their CpG sites. To test our proposal we have selected a dataset from The Cancer Genome Atlas data portal and an AE with a single-hidden layer. The literature and enrichment analysis (based on genomic context and functional annotation) conducted regarding the genes obtained with our experiment confirmed that all of these genes were related to breast cancer recurrence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮元珊完成签到 ,获得积分10
刚刚
cc完成签到 ,获得积分10
2秒前
木木完成签到 ,获得积分10
2秒前
五月完成签到 ,获得积分10
6秒前
YJ完成签到,获得积分10
6秒前
所所应助dejavu采纳,获得30
7秒前
我很好完成签到 ,获得积分10
10秒前
长孙归尘完成签到 ,获得积分10
11秒前
邓炎林完成签到 ,获得积分10
12秒前
14秒前
14秒前
冰汤圆完成签到 ,获得积分10
14秒前
qwe完成签到,获得积分10
17秒前
细心笑卉完成签到 ,获得积分10
19秒前
潇洒迎夏发布了新的文献求助10
19秒前
jzmupyj完成签到,获得积分10
20秒前
21秒前
咖啡味椰果完成签到 ,获得积分10
21秒前
潇洒迎夏完成签到,获得积分20
28秒前
gnr2000发布了新的文献求助10
29秒前
jzmulyl完成签到,获得积分10
30秒前
elsa622完成签到 ,获得积分10
32秒前
Li完成签到,获得积分10
33秒前
sunflower完成签到,获得积分0
37秒前
风信子deon01完成签到,获得积分10
43秒前
001完成签到,获得积分10
45秒前
火星上的雨柏完成签到,获得积分10
45秒前
Yx完成签到,获得积分10
50秒前
51秒前
畅快山兰完成签到 ,获得积分10
51秒前
嘟嘟雯完成签到 ,获得积分10
52秒前
木又完成签到 ,获得积分10
52秒前
李健的小迷弟应助wowser采纳,获得30
53秒前
你要学好完成签到 ,获得积分10
55秒前
56秒前
dejavu发布了新的文献求助10
58秒前
芊芊完成签到 ,获得积分10
58秒前
zwy完成签到 ,获得积分10
1分钟前
奶油泡fu完成签到 ,获得积分10
1分钟前
Beyond095完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784840
求助须知:如何正确求助?哪些是违规求助? 3330107
关于积分的说明 10244337
捐赠科研通 3045477
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759557