Integrating data mining and machine learning to discover high-strength ductile titanium alloys

材料科学 延展性(地球科学) 冶金 工程物理 机器学习 计算机科学 人工智能 工程类 蠕动
作者
Chengxiong Zou,Jinshan Li,William Yi Wang,Ying Zhang,De-Ye Lin,Ruihao Yuan,Xiaodan Wang,Bin Tang,Jun Wang,Xingyu Gao,Hongchao Kou,Xidong Hui,Xiaoqin Zeng,Ma Qian,Haifeng Song,Zi‐Kui Liu,Dongsheng Xu
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:202: 211-221 被引量:129
标识
DOI:10.1016/j.actamat.2020.10.056
摘要

Based on the growing power of computational capabilities and algorithmic developments, with the help of data-driven and high-throughput calculations, a new paradigm accelerating materials discovery, design and optimization is emerging. Titanium (Ti) alloys have been chosen herein to highlight an integrated computational materials engineering case study with the aim of improving their strength and ductility. The electronic properties of elemental building blocks were derived from high-throughput first-principles calculations and presented in the form of the Mendeleev periodic table, including their electron work function (Ф), Fermi energy (EF), bonding charge density (Δρ), and lattice distortion energy. The atomic and electronic insights of the composition–structure–property relationships were revealed by a data mining approach, addressing the key features/principles for the design strategies of advanced alloys. Guided by defect engineering, the deformation fault energy and dislocation width were treated as the dominating criteria in improving the ductility. The proposed yield strength model was utilized quantitatively to present the contributions of solid-solution strengthening and grain refinement hardening. Machine learning was used collaboratively with fundamental knowledge and feed back into a new training model, shown to be superior to the empirical molybdenum equivalence method. The results draw a conclusion that the integration of data mining and machine learning will not only generate plausible explanations and address new hypotheses, but also enable the design of strong and ductile Ti alloys in a more efficient and cost-effective way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
譬如朝露发布了新的文献求助10
刚刚
英俊的铭应助MADMAX采纳,获得10
刚刚
万能图书馆应助贝壳采纳,获得10
1秒前
Ceceliayyy发布了新的文献求助10
2秒前
mofeik发布了新的文献求助10
2秒前
2秒前
Orange发布了新的文献求助10
5秒前
丘比特应助eghiefefe采纳,获得10
5秒前
李爱国应助马肉肉采纳,获得10
7秒前
江姜发布了新的文献求助10
7秒前
7秒前
xiaohuangya发布了新的文献求助10
8秒前
8秒前
风清扬发布了新的文献求助50
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
爱学习的小迟完成签到,获得积分10
14秒前
虞映秋发布了新的文献求助10
15秒前
15秒前
16秒前
barwin发布了新的文献求助10
16秒前
杨大泡泡完成签到 ,获得积分10
17秒前
17秒前
爆米花应助仙乐采纳,获得10
18秒前
霸气的若翠完成签到,获得积分10
19秒前
白日梦想家完成签到 ,获得积分10
19秒前
积极一德完成签到 ,获得积分10
20秒前
知了完成签到 ,获得积分10
20秒前
马肉肉发布了新的文献求助10
20秒前
我的文献互助完成签到,获得积分20
20秒前
20秒前
虞映秋完成签到,获得积分10
22秒前
Ceceliayyy发布了新的文献求助10
22秒前
22秒前
25秒前
PANYIAO完成签到,获得积分10
25秒前
25秒前
qbx发布了新的文献求助10
25秒前
26秒前
Hello应助酒心可可采纳,获得10
26秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885529
求助须知:如何正确求助?哪些是违规求助? 3427611
关于积分的说明 10756133
捐赠科研通 3152532
什么是DOI,文献DOI怎么找? 1740375
邀请新用户注册赠送积分活动 840198
科研通“疑难数据库(出版商)”最低求助积分说明 785204