亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated clash resolution for reinforcement steel design in concrete frames via Q-learning and Building Information Modeling

钢筋 强化学习 帧(网络) 编码(集合论) 钢筋 建筑信息建模 钢结构设计 增强学习 软件 计算机科学 工程类 人工智能 结构工程 集合(抽象数据类型) 机械工程 相容性(地球化学) 化学工程 程序设计语言
作者
Jiepeng Liu,Pengkun Liu,Liang Feng,Wenbo Wu,Dongsheng Li,Y. Frank Chen
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:112: 103062-103062 被引量:53
标识
DOI:10.1016/j.autcon.2019.103062
摘要

The design of reinforcing steel bars (rebars) is critical to reinforced concrete (RC) structures. Generally, a good number of rebars are required by a design code, particularly at member connections. As such, rebar clashes (i.e., collisions and congestions) would be inevitable. It would be impractical, labor-intensive, and error-prone to avoid all possible clashes manually or even using standard design software. The building information modeling (BIM) technology has been utilized by the present architecture, engineering, and construction (ACE) industry for clash-free rebar designs. However, most existing BIM-based approaches offer the clash resolution strategy for moving components with an optimization algorithm, and are only applicable to the RC structures with regular shapes. In particular, the optimized path of rebars cannot be adjusted to avoid the obstacles, thus limiting the practical applications. Furthermore, most existing studies lack the learning from design code and constructibility constraints to realize automatic and intelligent arrangement and adjustment of rebars for avoiding the obstacles encountered in complex RC joints and frame structures. Considering these shortcomings, the authors have recently proposed an immediate reward-based multi-agent reinforcement learning (MARL) system with BIM, towards automatic clash-free rebar designs of RC joints without clashes. However, as the immediate reward is required in the MARL system for guiding the learning of a rebar design, it will not succeed in clash-free rebar designs of complex RC structures where immediate reward is often unavailable. In this study, this study further extends the previous work with Q-learning (a model-free reinforcement learning algorithm) for more realistic path planning considering both immediate and delayed rewards in clash-free rebar designs for real-world RC structures. In particular, the rebar design problem is treated as a path-planning problem of multi-agent system, where each rebar is deemed as an intelligence reinforcement learning agent. Next, by employing the Q-learning as the reinforcement learning engine, the particular form of state, action, and immediate and delayed rewards for the reinforcement MARL for automatic rebar designs considering more actual constructible constraints and design codes can be developed. Comprehensive experiments on three typical beam-column joints and a two-story RC building frame were conducted to evaluate the efficiency of the proposed method. The study results of paths of rebar designs, success rates, and average time confirm that the proposed framework with MARL and BIM is effective and efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
clover完成签到,获得积分10
21秒前
嗯嗯嗯完成签到,获得积分10
27秒前
32秒前
33秒前
36秒前
42秒前
Wei发布了新的文献求助50
46秒前
1分钟前
1分钟前
小蘑菇应助酷酷李可爱婕采纳,获得10
1分钟前
时否十七完成签到,获得积分10
1分钟前
110o发布了新的文献求助10
1分钟前
NexusExplorer应助饱满羽毛采纳,获得10
1分钟前
李李原上草完成签到 ,获得积分0
1分钟前
合适的平安完成签到 ,获得积分10
1分钟前
1分钟前
饱满羽毛发布了新的文献求助10
2分钟前
sun完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
唐泽雪穗发布了新的文献求助40
2分钟前
2分钟前
2分钟前
clearsky应助科研通管家采纳,获得10
2分钟前
拉长的沛芹完成签到,获得积分10
2分钟前
3分钟前
3分钟前
陆上飞发布了新的文献求助10
3分钟前
Ballyhooed发布了新的文献求助10
3分钟前
3分钟前
桐桐应助酷酷李可爱婕采纳,获得10
3分钟前
陆上飞完成签到,获得积分10
3分钟前
安静的雨发布了新的文献求助10
3分钟前
深情安青应助安静的雨采纳,获得10
3分钟前
安静的雨完成签到,获得积分10
3分钟前
3分钟前
HS发布了新的文献求助10
3分钟前
4分钟前
Fu发布了新的文献求助10
4分钟前
CipherSage应助yang采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4682068
求助须知:如何正确求助?哪些是违规求助? 4057710
关于积分的说明 12545356
捐赠科研通 3753017
什么是DOI,文献DOI怎么找? 2072733
邀请新用户注册赠送积分活动 1101828
科研通“疑难数据库(出版商)”最低求助积分说明 981119