已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Independent attenuation correction of whole body [18F]FDG-PET using a deep learning approach with Generative Adversarial Networks

衰减校正 衰减 PET-CT 人工智能 心脏成像 医学 生成对抗网络 核医学 深度学习 正电子发射断层摄影术 模式识别(心理学) 计算机科学 放射科 物理 光学
作者
Karim Armanious,Tobias Hepp,Thomas Küstner,Helmut Dittmann,Konstantin Nikolaou,Christian la Fougère,Bin Yang,Sergios Gatidis
出处
期刊:EJNMMI research [Springer Science+Business Media]
卷期号:10 (1) 被引量:46
标识
DOI:10.1186/s13550-020-00644-y
摘要

Attenuation correction (AC) of PET data is usually performed using a second imaging for the generation of attenuation maps. In certain situations however-when CT- or MR-derived attenuation maps are corrupted or CT acquisition solely for the purpose of AC shall be avoided-it would be of value to have the possibility of obtaining attenuation maps only based on PET information. The purpose of this study was to thus develop, implement, and evaluate a deep learning-based method for whole body [18F]FDG-PET AC which is independent of other imaging modalities for acquiring the attenuation map.The proposed method is investigated on whole body [18F]FDG-PET data using a Generative Adversarial Networks (GAN) deep learning framework. It is trained to generate pseudo CT images (CTGAN) based on paired training data of non-attenuation corrected PET data (PETNAC) and corresponding CT data. Generated pseudo CTs are then used for subsequent PET AC. One hundred data sets of whole body PETNAC and corresponding CT were used for training. Twenty-five PET/CT examinations were used as test data sets (not included in training). On these test data sets, AC of PET was performed using the acquired CT as well as CTGAN resulting in the corresponding PET data sets PETAC and PETGAN. CTGAN and PETGAN were evaluated qualitatively by visual inspection and by visual analysis of color-coded difference maps. Quantitative analysis was performed by comparison of organ and lesion SUVs between PETAC and PETGAN.Qualitative analysis revealed no major SUV deviations on PETGAN for most anatomic regions; visually detectable deviations were mainly observed along the diaphragm and the lung border. Quantitative analysis revealed mean percent deviations of SUVs on PETGAN of - 0.8 ± 8.6% over all organs (range [- 30.7%, + 27.1%]). Mean lesion SUVs showed a mean deviation of 0.9 ± 9.2% (range [- 19.6%, + 29.2%]).Independent AC of whole body [18F]FDG-PET is feasible using the proposed deep learning approach yielding satisfactory PET quantification accuracy. Further clinical validation is necessary prior to implementation in clinical routine applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Soul459完成签到 ,获得积分10
1秒前
伊雪儿发布了新的文献求助10
1秒前
1秒前
2秒前
4秒前
稳重的鑫鹏完成签到 ,获得积分10
6秒前
爱吃橙子完成签到 ,获得积分10
6秒前
予东发布了新的文献求助10
9秒前
10秒前
鱼子酱完成签到,获得积分10
10秒前
李爱国应助导师老八采纳,获得10
12秒前
3542002完成签到,获得积分20
13秒前
乏味完成签到 ,获得积分20
14秒前
23应助LmaPN7采纳,获得20
15秒前
852应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
黄林旋发布了新的文献求助10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
16秒前
童diedie发布了新的文献求助10
17秒前
千纸鹤完成签到 ,获得积分10
18秒前
18秒前
19秒前
予东完成签到,获得积分10
19秒前
21秒前
KEHUGE发布了新的文献求助10
21秒前
yanne发布了新的文献求助10
23秒前
张琳完成签到 ,获得积分10
24秒前
25秒前
hyx完成签到,获得积分10
26秒前
木木木木发布了新的文献求助10
26秒前
希望天下0贩的0应助Med采纳,获得10
26秒前
汉堡包应助寻123采纳,获得10
28秒前
Qifan发布了新的文献求助10
29秒前
Mr.靠谱发布了新的文献求助20
29秒前
赘婿应助Bean采纳,获得10
32秒前
完美世界应助zz采纳,获得10
33秒前
sky发布了新的文献求助10
35秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Psychology Applied to Teaching 14th Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4085144
求助须知:如何正确求助?哪些是违规求助? 3624212
关于积分的说明 11496310
捐赠科研通 3338357
什么是DOI,文献DOI怎么找? 1835252
邀请新用户注册赠送积分活动 903768
科研通“疑难数据库(出版商)”最低求助积分说明 821956