已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficient development of vision-based dense three-dimensional displacement measurement algorithms using physics-based graphics models

计算机科学 人工智能 算法 计算机视觉 绘图 流离失所(心理学) 基本事实 计算机图形学(图像) 心理学 心理治疗师
作者
Yasutaka Narazaki,Fernando Gómez,Vedhus Hoskere,Matthew D. Smith,Billie F. Spencer
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:20 (4): 1841-1863 被引量:40
标识
DOI:10.1177/1475921720939522
摘要

This research investigates a framework for the efficient development of vision-based dense three-dimensional displacement measurement algorithms to support reliable structural health monitoring of civil structures. The framework exploits the use of a photo-realistic synthetic model, termed a physics-based graphics model, to simulate the entire process of vision-based measurement. At the same time, the synthetic environment is used to evaluate the performance of different post-processing algorithms quantitatively for a given measurement scenario, such as camera selection and camera placement. The effectiveness of the framework is demonstrated by optimizing the algorithms for the three-dimensional displacement measurement of a 14-bay laboratory truss structure. The vision-based dense three-dimensional displacement estimation algorithms optimized in this study consist of four steps: (1) camera parameter estimation, (2) camera motion estimation and compensation, (3) vision-based two-dimensional tracking, and (4) projection of two-dimensional tracking results to three-dimensional space. The algorithms use the knowledge from the finite element model to facilitate the implementation and maximize the measurement outcome, that is, model-informed approach. To test and evaluate the model-informed approach, synthetic videos are rendered for two measurement scenarios, that is, using a Digital Single Lens Reflex camera mounted on a tripod and using an Unmanned Aerial Vehicle camera. Then, the performance of the model-informed approach is evaluated by comparing the estimated displacement with the ground truth values. Based on the performance evaluation, an algorithm with the highest expected performance is selected for each of the two measurement scenarios. Finally, the selected algorithm is tested in a laboratory experiment. In contrast to the existing literature that investigates fixed individual measurement scenarios, the proposed framework can be used to test different measurement scenarios and estimate the outcome of each scenario before performing actual tests, facilitating the implementation of vision-based measurement for the structural health monitoring of civil structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡胡胡发布了新的文献求助10
1秒前
小蘑菇应助能干发夹采纳,获得10
3秒前
短巷完成签到 ,获得积分10
3秒前
JacekYu完成签到 ,获得积分10
7秒前
李健的小迷弟应助diode采纳,获得10
10秒前
11秒前
Augustines完成签到,获得积分10
11秒前
ll完成签到,获得积分10
12秒前
ick558完成签到,获得积分10
13秒前
15秒前
000完成签到 ,获得积分10
15秒前
meng完成签到 ,获得积分10
17秒前
缺粥完成签到 ,获得积分10
17秒前
17秒前
宇智波白哉完成签到 ,获得积分10
20秒前
灵巧尔云完成签到,获得积分10
20秒前
情怀应助人间月色采纳,获得10
22秒前
Bbsheep发布了新的文献求助10
23秒前
落落完成签到 ,获得积分0
23秒前
玖月完成签到 ,获得积分10
23秒前
23秒前
23秒前
有魅力的书本完成签到 ,获得积分10
24秒前
nnnnnn完成签到,获得积分20
27秒前
痴痴的噜完成签到,获得积分10
27秒前
chen完成签到 ,获得积分10
28秒前
金金金完成签到,获得积分10
29秒前
nnnnnn发布了新的文献求助10
30秒前
30秒前
符fu完成签到 ,获得积分10
32秒前
潇洒的盼望完成签到 ,获得积分10
36秒前
Lucas应助金金金采纳,获得10
36秒前
烟花应助dbq采纳,获得10
38秒前
隐形曼青应助nnnnnn采纳,获得10
38秒前
2224270676完成签到,获得积分10
39秒前
39秒前
41秒前
小蘑菇应助谦让的博采纳,获得10
42秒前
上官若男应助科研通管家采纳,获得10
43秒前
丘比特应助科研通管家采纳,获得10
43秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800821
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329064
捐赠科研通 3062766
什么是DOI,文献DOI怎么找? 1681193
邀请新用户注册赠送积分活动 807425
科研通“疑难数据库(出版商)”最低求助积分说明 763702