18F-FDG PET/CT Uptake Classification in Lymphoma and Lung Cancer by Using Deep Convolutional Neural Networks

医学 肺癌 正电子发射断层摄影术 淋巴瘤 核医学 氟脱氧葡萄糖 接收机工作特性 癌症 置信区间 放射科 卷积神经网络 回顾性队列研究 病理 内科学 人工智能 计算机科学
作者
Ludovic Sibille,Robert Seifert,Nemanja Avramović,Thomas Vehren,Bruce Spottiswoode,Sven Zuehlsdorff,Michael Schäfers
出处
期刊:Radiology [Radiological Society of North America]
卷期号:294 (2): 445-452 被引量:187
标识
DOI:10.1148/radiol.2019191114
摘要

Background Fluorine 18 (18F)-fluorodeoxyglucose (FDG) PET/CT is a routine tool for staging patients with lymphoma and lung cancer. Purpose To evaluate configurations of deep convolutional neural networks (CNNs) to localize and classify uptake patterns of whole-body 18F-FDG PET/CT images in patients with lung cancer and lymphoma. Materials and Methods This was a retrospective analysis of consecutive patients with lung cancer or lymphoma referred to a single center from August 2011 to August 2013. Two nuclear medicine experts manually delineated foci with increased 18F-FDG uptake, specified the anatomic location, and classified these findings as suspicious for tumor or metastasis or nonsuspicious. By using these expert readings as the reference standard, a CNN was developed to detect foci positive for 18F-FDG uptake, predict the anatomic location, and determine the expert classification. Examinations were divided into independent training (60%), validation (20%), and test (20%) subsets. Results This study included 629 patients (mean age, 52.2 years ± 20.4 [standard deviation]; 394 men). There were 302 patients with lung cancer and 327 patients with lymphoma. For the test set (123 patients; 10 782 foci), the CNN areas under the receiver operating characteristic curve (AUCs) for determining hypermetabolic 18F-FDG PET/CT foci that were suspicious for cancer versus nonsuspicious by using the five input features were as follows: CT alone, 0.78 (95% confidence interval [CI]: 0.72, 0.83); 18F-FDG PET alone, 0.97 (95% CI: 0.97, 0.98); 18F-FDG PET/CT, 0.98 (95% CI: 0.97, 0.99); 18F-FDG PET/CT maximum intensity projection (MIP), 0.98 (95% CI: 0.98, 0.99); and 18F-FDG PET/CT MIP atlas, 0.99 (95% CI: 0.98, 1.00). The combination of 18F-FDG PET and CT information improved overall classification accuracy (AUC, 0.975 vs 0.981, respectively; P < .001). Anatomic localization accuracy of the CNN was 2543 of 2639 (96.4%; 95% CI: 95.5%, 97.1%) for body part, 2292 of 2639 (86.9%; 95% CI: 85.3%, 88.5%) for region (ie, organ), and 2149 of 2639 (81.4%; 95% CI: 79.3%-83.5%) for subregion. Conclusion The fully automated anatomic localization and classification of fluorine 18-fluorodeoxyglucose PET uptake patterns in foci suspicious and nonsuspicious for cancer in patients with lung cancer and lymphoma by using a convolutional neural network is feasible and achieves high diagnostic performance when both CT and PET images are used. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Froelich and Salavati in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助CCS采纳,获得10
2秒前
浮游应助fryeia采纳,获得10
3秒前
量子星尘发布了新的文献求助150
3秒前
cjy完成签到 ,获得积分10
3秒前
如意的灵枫完成签到 ,获得积分10
4秒前
4秒前
5秒前
liverbool完成签到,获得积分10
6秒前
李健应助jinhongyangkim采纳,获得30
6秒前
科研通AI6应助亦亦采纳,获得10
7秒前
8秒前
9秒前
Owen应助白子双采纳,获得10
10秒前
10秒前
11秒前
一一完成签到,获得积分10
12秒前
weirdo发布了新的文献求助10
14秒前
wangjincheng发布了新的文献求助10
15秒前
hjy完成签到,获得积分10
15秒前
16秒前
chxxx发布了新的文献求助10
16秒前
苏眠月发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助150
17秒前
英俊的铭应助科研通管家采纳,获得20
17秒前
田様应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
blue应助科研通管家采纳,获得20
18秒前
Owen应助科研通管家采纳,获得30
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
Hilda007应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
18秒前
Hello应助Patronus采纳,获得10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125917
求助须知:如何正确求助?哪些是违规求助? 4329582
关于积分的说明 13491436
捐赠科研通 4164515
什么是DOI,文献DOI怎么找? 2282992
邀请新用户注册赠送积分活动 1284044
关于科研通互助平台的介绍 1223448