DeepXDE: A Deep Learning Library for Solving Differential Equations

计算机科学 Python(编程语言) 偏微分方程 建设性的 人工神经网络 自动微分 反问题 理论计算机科学 人工智能 数学优化 数学 应用数学 算法 计算 数学分析 过程(计算) 操作系统
作者
Lu Lu,Xuhui Meng,Zhiping Mao,George Em Karniadakis
出处
期刊:Siam Review [Society for Industrial and Applied Mathematics]
卷期号:63 (1): 208-228 被引量:1560
标识
DOI:10.1137/19m1274067
摘要

Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from an implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an educational tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging scientific machine learning field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jing发布了新的文献求助10
刚刚
1秒前
z7777777发布了新的文献求助10
2秒前
2秒前
orixero应助charint采纳,获得10
5秒前
CodeCraft应助微笑的丑采纳,获得10
5秒前
5秒前
李健应助Moonber采纳,获得10
7秒前
MRu发布了新的文献求助10
7秒前
7秒前
充电宝应助十九采纳,获得10
7秒前
8秒前
bkagyin应助聪慧的盼夏采纳,获得10
8秒前
酷炫的世倌完成签到,获得积分10
13秒前
圆头圆脑圆肚皮完成签到 ,获得积分10
13秒前
Ava应助歪歪唧唧采纳,获得10
14秒前
zyb完成签到 ,获得积分10
15秒前
15秒前
xxfsx应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
yznfly应助科研通管家采纳,获得20
15秒前
一叶知秋应助科研通管家采纳,获得10
15秒前
一叶知秋应助科研通管家采纳,获得10
15秒前
15秒前
6666应助科研通管家采纳,获得10
15秒前
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
15秒前
烟花应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
xxfsx应助科研通管家采纳,获得10
16秒前
SuyingGuo发布了新的文献求助30
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
xxfsx应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
复杂系统建模与弹性模型研究 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5486622
求助须知:如何正确求助?哪些是违规求助? 4586181
关于积分的说明 14408065
捐赠科研通 4516614
什么是DOI,文献DOI怎么找? 2474910
邀请新用户注册赠送积分活动 1460776
关于科研通互助平台的介绍 1433882