DeepXDE: A Deep Learning Library for Solving Differential Equations

计算机科学 Python(编程语言) 偏微分方程 建设性的 人工神经网络 自动微分 反问题 理论计算机科学 人工智能 数学优化 数学 应用数学 算法 计算 数学分析 操作系统 过程(计算)
作者
Lu Lu,Xuhui Meng,Zhiping Mao,George Em Karniadakis
出处
期刊:Siam Review [Society for Industrial and Applied Mathematics]
卷期号:63 (1): 208-228 被引量:1334
标识
DOI:10.1137/19m1274067
摘要

Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from an implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an educational tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging scientific machine learning field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Star1983发布了新的文献求助10
刚刚
犹豫天问完成签到,获得积分10
1秒前
Zz完成签到 ,获得积分10
1秒前
ercha完成签到,获得积分10
1秒前
打铁佬完成签到,获得积分10
1秒前
故酒应助Tonald Yang采纳,获得10
2秒前
超级的鹅完成签到,获得积分10
4秒前
克林完成签到,获得积分10
5秒前
Aspirin完成签到,获得积分10
8秒前
红鲤完成签到,获得积分10
8秒前
wenqing完成签到 ,获得积分10
8秒前
雨桐完成签到,获得积分10
9秒前
道友等等我完成签到,获得积分0
9秒前
内向南风完成签到 ,获得积分10
10秒前
xinxinqi完成签到 ,获得积分10
10秒前
大模型应助超级的鹅采纳,获得10
10秒前
三颗石头完成签到,获得积分0
11秒前
阿桓完成签到 ,获得积分10
11秒前
非我完成签到 ,获得积分10
13秒前
笑柳发布了新的文献求助10
17秒前
MM完成签到,获得积分10
20秒前
长情箴完成签到 ,获得积分10
21秒前
a龙完成签到,获得积分10
21秒前
一自文又欠完成签到,获得积分10
21秒前
雨恋凡尘完成签到,获得积分0
22秒前
做实验太菜完成签到,获得积分10
22秒前
赵某人完成签到,获得积分10
24秒前
iuhgnor完成签到,获得积分10
24秒前
24秒前
yongzaizhuigan完成签到,获得积分0
25秒前
学术完成签到 ,获得积分10
26秒前
27秒前
nano发布了新的文献求助10
29秒前
MOON完成签到,获得积分10
30秒前
balabala发布了新的文献求助10
31秒前
cdercder应助march_happy采纳,获得20
33秒前
ES完成签到 ,获得积分10
37秒前
完美的沉鱼完成签到 ,获得积分10
37秒前
liyanglin完成签到 ,获得积分10
37秒前
东方欲晓完成签到,获得积分10
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788455
求助须知:如何正确求助?哪些是违规求助? 3333771
关于积分的说明 10263510
捐赠科研通 3049672
什么是DOI,文献DOI怎么找? 1673652
邀请新用户注册赠送积分活动 802148
科研通“疑难数据库(出版商)”最低求助积分说明 760526