亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toward a First-Principles Framework for Predicting Collective Properties of Electrolytes

电解质 代表(政治) 离子 分子动力学 化学 统计物理学 量子 化学物理 计算机科学 物理 计算化学 量子力学 物理化学 有机化学 电极 政治 政治学 法学
作者
Timothy T. Duignan,Shawn M. Kathmann,Gregory K. Schenter,Christopher J. Mundy
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (13): 2833-2843 被引量:39
标识
DOI:10.1021/acs.accounts.1c00107
摘要

Given the universal importance of electrolyte solutions, it is natural to expect that we have a nearly complete understanding of the fundamental properties of these solutions (e.g., the chemical potential) and that we can therefore explain, predict, and control the phenomena occurring in them. In fact, reality falls short of these expectations. But, recent advances in the simulation and modeling of electrolyte solutions indicate that it should soon be possible to make progress toward these goals. In this Account, we will discuss the use of first-principles interaction potentials based in quantum mechanics (QM) to enhance our understanding of electrolyte solutions. Specifically, we will focus on the use of quantum density functional theory (DFT) combined with molecular dynamics simulation (DFT-MD) as the foundation for our approach. The overarching concept is to understand and accurately reproduce the balance between local or short-ranged (SR) structural details and long-range (LR) correlations, allowing the prediction of the thermodynamics of both single ions in solution as well as the collective interactions characterized by activity/osmotic coefficients. In doing so, relevant collective motions and driving forces characterized by chemical potentials can be determined.In this Account, we will make the case that understanding electrolyte solutions requires a faithful QM representation of the SR nature of the ion-ion, ion-water, and water-water interactions. However, the number of molecules that is required for collective behavior makes the direct application of high-level QM methods that contain the best SR physics untenable, making methods that balance accuracy and efficiency a practical goal. Alternatives such as continuum solvent models (CSMs) and empirically based classical molecular dynamics have been extensively employed to resolve this problem but without yet overcoming the fundamental issue of SR accuracy. We will demonstrate that accurately describing the SR interaction is imperative for predicting both intrinsic properties, namely, at infinite dilution, and collective properties of electrolyte solutions.DFT has played an important role in our understanding of condensed phase systems, e.g., bulk liquid water, the air-water interface, ions in bulk, and at the air-water interface. This approach holds huge promise to provide benchmark calculations of electrolyte solution properties that will allow for the development and improvement of more efficient methods, as well as an enhanced understanding of fundamental phenomena. However, the standard protocol using the generalized gradient approximation with van der Waals (vdW) correction requires improvement in order to achieve a high level of quantitative accuracy. Simply simulating with higher level DFT functionals may not be the best route considering the significant computational cost. Alternative methods of incorporating information from higher levels of QM should be explored; e.g., using force matching techniques on small clusters, where high level benchmark calculations are possible, to develop ideal correction terms to the DFT functional is a promising possibility. We argue that DFT with statistical mechanics is becoming an increasingly useful framework enabling the prediction of collective electrolyte properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingcoming完成签到,获得积分10
6秒前
大模型应助科研通管家采纳,获得10
30秒前
1分钟前
把的蛮耐得烦完成签到 ,获得积分10
1分钟前
刘森哺发布了新的文献求助50
1分钟前
轻松的芯完成签到 ,获得积分10
1分钟前
刘森哺完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
淡定的井完成签到,获得积分20
3分钟前
在水一方应助lydia采纳,获得10
3分钟前
silsotiscolor完成签到,获得积分10
4分钟前
852应助啥也不会采纳,获得30
4分钟前
南宫古伦完成签到 ,获得积分10
4分钟前
4分钟前
啥也不会发布了新的文献求助30
4分钟前
小蘑菇应助zm采纳,获得10
4分钟前
小二郎应助科研通管家采纳,获得10
4分钟前
啥也不会完成签到,获得积分10
4分钟前
lanbing802发布了新的文献求助10
4分钟前
5分钟前
小羊同学发布了新的文献求助10
5分钟前
小羊同学完成签到,获得积分10
5分钟前
5分钟前
lydia发布了新的文献求助10
5分钟前
重要元灵完成签到 ,获得积分10
6分钟前
沉静完成签到 ,获得积分10
6分钟前
lydia完成签到,获得积分10
7分钟前
小尾巴发布了新的文献求助20
7分钟前
孟筱完成签到 ,获得积分10
7分钟前
lanbing802发布了新的文献求助10
7分钟前
Hello应助mbxjsy采纳,获得20
7分钟前
pass完成签到 ,获得积分10
7分钟前
8分钟前
mbxjsy发布了新的文献求助20
8分钟前
白昼の月完成签到 ,获得积分0
8分钟前
小尾巴完成签到,获得积分10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
汉堡包应助LiH采纳,获得10
9分钟前
lanbing802完成签到,获得积分10
10分钟前
minusplus完成签到,获得积分10
10分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782682
求助须知:如何正确求助?哪些是违规求助? 3328076
关于积分的说明 10234318
捐赠科研通 3043042
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799684
科研通“疑难数据库(出版商)”最低求助积分说明 758994