A spatial-temporal approach for traffic status analysis and prediction based on Bi-LSTM structure

计算机科学 智能交通系统 流量(计算机网络) 数据挖掘 时间序列 大数据 人工智能 机器学习 计算机安全 工程类 土木工程
作者
Linjia Li,Yang Yang,Zhenzhou Yuan,Zhi Chen
出处
期刊:Modern Physics Letters B [World Scientific]
卷期号:35 (31) 被引量:24
标识
DOI:10.1142/s0217984921504819
摘要

Urban traffic control has become a big issue to help traffic management in recent years. With data explosion, Intelligent Transportation System (ITS) is developing rapidly. ITS is an advanced data-based method for traffic control, which requires timely and effective information supply. This research aims at providing real-time and accurate traffic flow data by intelligent prediction method. Applying multiple road traffic flow data of the Caltrans Performance Measurement System (PeMS) and separating the time series, the mechanism of spatial-temporal differences was taken into consideration. Based on the basic Long Short-Term Memory (LSTM) model, an improved LSTM model with Dropout and Bi-structure (Bi-LSTM) for traffic flow prediction was presented. In the prediction process, we applied three models including the improved Bi-LSTM model, Gated Recurrent Unit (GRU) model and Linear Regression in the experiment, and made a comparison from aspects of model structure complexity, operating efficiency and prediction accuracy. To validate the portability of the prediction model, the features of traffic flow from different datasets were further analyzed. The experimental results show that the improved Bi-LSTM model performs best in traffic flow prediction with comprehensive rationality, which reaches an accuracy of about 92% when considering temporal differences. Particularly, the specific factors of traffic situations and locations which is more applicable to be predicted by the improved Bi-LSTM model are summarized considering spatial differences. This research proposes an advanced and accurate model to provide real-time and short-term traffic flow prediction data, which is of great help to intelligent traffic control. Considering the mechanism between model and road traffic properties, the results suggest that it is more applicable in urban commercial area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助wh1t3zZ采纳,获得10
刚刚
欧班长完成签到,获得积分10
刚刚
冰奈铁发布了新的文献求助30
刚刚
刚刚
dmm完成签到 ,获得积分10
1秒前
小马甲应助雨夜星空采纳,获得10
2秒前
烟花应助净净子采纳,获得10
2秒前
Eldrazi发布了新的文献求助10
2秒前
大鱼完成签到 ,获得积分10
2秒前
Jason完成签到 ,获得积分10
2秒前
务实的菓完成签到 ,获得积分10
3秒前
阿典完成签到,获得积分10
3秒前
yang完成签到,获得积分20
3秒前
3秒前
缥缈完成签到 ,获得积分10
4秒前
小杰发布了新的文献求助10
4秒前
4秒前
bkagyin应助俭朴的以筠采纳,获得10
5秒前
张子烜完成签到,获得积分10
5秒前
文风杰采完成签到,获得积分10
5秒前
小二郎应助歌苓新采纳,获得10
5秒前
6秒前
cindy1226完成签到,获得积分10
7秒前
7秒前
YifanWang应助rayce采纳,获得20
7秒前
7秒前
8秒前
tuetue应助cc采纳,获得10
8秒前
hhhhhhhhhh完成签到 ,获得积分10
8秒前
顾矜应助神勇初瑶采纳,获得10
8秒前
爱悠悠完成签到 ,获得积分10
8秒前
小杰完成签到,获得积分10
9秒前
遇见未来完成签到,获得积分10
9秒前
9秒前
快乐的水杯完成签到,获得积分10
10秒前
彩色紫南发布了新的文献求助10
10秒前
马计鑫关注了科研通微信公众号
10秒前
桐桐应助畅快山兰采纳,获得10
11秒前
魔幻的语堂完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946358
求助须知:如何正确求助?哪些是违规求助? 3491464
关于积分的说明 11060803
捐赠科研通 3222311
什么是DOI,文献DOI怎么找? 1780950
邀请新用户注册赠送积分活动 865943
科研通“疑难数据库(出版商)”最低求助积分说明 800083