已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A framework for coupled physics-deep learning inversion and multiparameter joint inversion

反演(地质) 计算机科学 利用 算法 合成数据 深度学习 数学优化 人工智能 数学 地质学 计算机安全 构造盆地 古生物学
作者
Daniele Colombo,Erşan Türkoğlu,Weichang Li,Diego Rovetta
标识
DOI:10.1190/segam2021-3583272.1
摘要

PreviousNext No AccessFirst International Meeting for Applied Geoscience & Energy Expanded AbstractsA framework for coupled physics-deep learning inversion and multiparameter joint inversionAuthors: Daniele ColomboErsan TurkogluWeichang LiDiego RovettaDaniele ColomboSaudi AramcoSearch for more papers by this author, Ersan TurkogluSaudi AramcoSearch for more papers by this author, Weichang LiAramco AmericasSearch for more papers by this author, and Diego RovettaAramco Overseas CompanySearch for more papers by this authorhttps://doi.org/10.1190/segam2021-3583272.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractA new approach to the inversion and joint inversion of geophysical data is described. We take advantage of the domains of local optimization and of the machine learning (ML) or deep learning (DL) technique to generate efficient optimization schemes to reduce uncertainties in the model parameter estimations, exploit the image segmentation capability of DL techniques, and guarantee compliance with the requirement of physics for the wave propagation. The domains of physics driven (Phy) optimization, based on data misfit functionals, and of DL optimization, based on model misfit (loss), are coupled by multiple penalty functions imposed on the common model term of the physical domain such as performed in a joint inversion approach. The procedure is complemented by network retraining with partial inversion results to augment the network knowledge base and enable more physics-oriented DL predictions. After several iterations, the procedure tends to converge to models satisfying both physics and DL optimization schemes by providing at the same time better resolution and accuracy in parameter estimation. The developed method is demonstrated on synthetic and field transient EM data.Keywords: inversion, machine learning, electromagnetics, multiphysicsPermalink: https://doi.org/10.1190/segam2021-3583272.1FiguresReferencesRelatedDetails First International Meeting for Applied Geoscience & Energy Expanded AbstractsISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2021 Pages: 3561 publication data© 2021 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished: 01 Sep 2021 CITATION INFORMATION Daniele Colombo, Ersan Turkoglu, Weichang Li, and Diego Rovetta, (2021), "A framework for coupled physics-deep learning inversion and multiparameter joint inversion," SEG Technical Program Expanded Abstracts : 1706-1710. https://doi.org/10.1190/segam2021-3583272.1 Plain-Language Summary Keywordsinversionmachine learningelectromagneticsmultiphysicsPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
橙子完成签到 ,获得积分10
2秒前
Hello应助可知蝶恋花采纳,获得10
3秒前
小欧文完成签到,获得积分10
6秒前
orixero应助奥利奥翠翠饼采纳,获得10
7秒前
优雅的大橙子关注了科研通微信公众号
7秒前
wlei完成签到,获得积分10
7秒前
Shandongdaxiu完成签到 ,获得积分10
9秒前
传统的大白完成签到,获得积分10
11秒前
12秒前
嗨是完成签到,获得积分10
14秒前
小尧完成签到,获得积分20
16秒前
sunny心晴完成签到 ,获得积分10
17秒前
梓然完成签到,获得积分10
17秒前
Diss发布了新的文献求助10
17秒前
mkljl完成签到 ,获得积分10
20秒前
20秒前
25秒前
26秒前
qqq完成签到,获得积分10
28秒前
30秒前
想吃桔子完成签到,获得积分10
31秒前
淡淡的诗兰完成签到 ,获得积分10
32秒前
33秒前
33秒前
大个应助zxy采纳,获得10
34秒前
pterionGao完成签到 ,获得积分10
36秒前
哭泣恋风完成签到 ,获得积分10
41秒前
顾矜应助司徒寒烟采纳,获得10
42秒前
李李完成签到,获得积分20
42秒前
孤独尔白应助iu1392采纳,获得10
44秒前
孤独尔白应助iu1392采纳,获得10
44秒前
WaitP完成签到,获得积分10
45秒前
46秒前
爹爹发布了新的文献求助10
53秒前
59秒前
FangyingTang完成签到 ,获得积分10
1分钟前
顾矜应助Fool采纳,获得10
1分钟前
1分钟前
手帕很忙完成签到,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798422
求助须知:如何正确求助?哪些是违规求助? 3343818
关于积分的说明 10317793
捐赠科研通 3060542
什么是DOI,文献DOI怎么找? 1679588
邀请新用户注册赠送积分活动 806729
科研通“疑难数据库(出版商)”最低求助积分说明 763296