Rapid identification of ore minerals using multi-scale dilated convolutional attention network associated with portable Raman spectroscopy

拉曼光谱 支持向量机 人工智能 计算机科学 模式识别(心理学) 深度学习 梯度升压 随机森林 光学 物理
作者
Yaoyi Cai,Degang Xu,Hong Shi
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:267: 120607-120607 被引量:31
标识
DOI:10.1016/j.saa.2021.120607
摘要

Electron portable Raman spectroscopy tools for ore mineral identification are widely used in raw ore analysis and mineral process engineering. This paper demonstrates an extremely fast and accurate method for identifying unknown ore mineral samples by portable Raman spectroscopy from the RRUFF database. Resampling and background subtraction procedures are used to eliminate the influence of the Raman spectrometer and fluorescence scattering. For the complex mineral spectral classification task, a multi-scale dilated convolutional attention network is designed. In addition, to investigate the identification performance of our method, several machine learning and two basic deep learning models, including k-nearest neighbor (k-NN), support vector machine (SVM), random forest (RF), cosine similarity, extreme gradient boosting machine (XGBoost), Alexnet and ResNet 18, are also developed on the mineral spectra database and applied for mineral identification. Comparative studies show that our CNN network outperforms other models with state-of-the-art results, achieving a top-1 accuracy of 89.51% and a top-3 accuracy of 96.54%. The function of each module and the explanations of the feature extraction in our CNN network were analyzed by ablation experiments and the Grad-CAM algorithm. The identification of ore mineral samples also proves the outstanding performance of our method. In conclusion, the proposed novel approach that exploits the advantages of portable Raman spectroscopy and a deep learning method is promising for rapidly identifying ore mineral samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助白石溪采纳,获得10
2秒前
Ankher发布了新的文献求助80
2秒前
闵问柳完成签到,获得积分10
4秒前
4秒前
初阶玩家发布了新的文献求助10
4秒前
清爽的觅儿完成签到,获得积分10
6秒前
退后分裂搁浅完成签到,获得积分10
8秒前
烛畔旧盟完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
顺利曼香完成签到,获得积分10
12秒前
无辜的夏兰完成签到,获得积分10
13秒前
充盈缺损发布了新的文献求助10
13秒前
博雅发布了新的文献求助10
14秒前
林兰特发布了新的文献求助10
15秒前
英俊的铭应助subohr采纳,获得10
15秒前
HXL完成签到 ,获得积分0
17秒前
hhhh完成签到,获得积分10
21秒前
coolkid应助vic303采纳,获得10
21秒前
吉吉发布了新的文献求助10
23秒前
24秒前
25秒前
26秒前
充盈缺损完成签到,获得积分10
26秒前
迷路的笑南完成签到 ,获得积分10
26秒前
28秒前
祈雪落发布了新的文献求助20
28秒前
29秒前
我是老大应助博雅采纳,获得10
30秒前
科研狗发布了新的文献求助200
32秒前
涣醒完成签到,获得积分10
33秒前
上官若男应助猪猪朱采纳,获得10
34秒前
褚香旋发布了新的文献求助10
37秒前
眼睛大的问儿完成签到,获得积分10
37秒前
善学以致用应助林兰特采纳,获得10
38秒前
张安洋完成签到,获得积分10
44秒前
44秒前
46秒前
jiangchuansm完成签到,获得积分10
48秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3943024
求助须知:如何正确求助?哪些是违规求助? 3488034
关于积分的说明 11046786
捐赠科研通 3218664
什么是DOI,文献DOI怎么找? 1779086
邀请新用户注册赠送积分活动 864519
科研通“疑难数据库(出版商)”最低求助积分说明 799562