Dual-Modified Compact Layer and Superficial Ti Doping for Reinforced Structural Integrity and Thermal Stability of Ni-Rich Cathodes

材料科学 阴极 热稳定性 涂层 化学工程 兴奋剂 锂(药物) 图层(电子) 复合材料 光电子学 物理化学 医学 工程类 内分泌学 化学
作者
Wen Yang,Changjiang Bai,Wei Xiang,Yang Song,Chunliu Xu,Lang Qiu,Fengrong He,Jun Zhang,Yan Sun,Yang Liu,Benhe Zhong,Zhenguo Wu,Xiaodong Guo
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (46): 54997-55006 被引量:49
标识
DOI:10.1021/acsami.1c15920
摘要

Nickel-rich layered oxides have been regarded as a potential cathode material for high-energy-density lithium-ion batteries because of the high specific capacity and low cost. However, the rapid capacity fading due to interfacial side reactions and bulk structural degradation seriously encumbers its commercialization. Herein, a highly stable hybrid surface architecture, which integrates an outer coating layer of TiO2&Li2TiO3 and a surficial titanium doping by incorporated Ti2O3, is carefully designed to enhance the structural stability and eliminate lithium impurity. Meanwhile, the surficial titanium doping induces a nanoscale cation-mixing layer, which suppresses transition-metal-ion migration and ameliorates the reversibility of the H2 → H3 phase transition. Also, the Li2TiO3 coating layer with three-dimensional channels promotes ion transportation. Moreover, the electrochemically stable TiO2 coating layer restrains side reactions and reinforces interfacial stability. With the collaboration of titanium doping and TiO2&Li2TiO3 hybrid coating, the sample with 1 mol % modified achieves a capacity retention of 93.02% after 100 cycles with a voltage decay of only 0.03 V and up to 84.62% at a high voltage of 3.0-4.5 V. Furthermore, the ordered occupation of Ni ions in the Li layer boosts the thermal stability by procrastinating the layered-to-rock salt phase transition. This work provides a straightforward and economical modification strategy for boosting the structural and thermal stability of nickel-rich cathode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
橙汁得配曼妥思完成签到 ,获得积分10
3秒前
4秒前
晶晶发布了新的文献求助10
4秒前
lijunlhc完成签到,获得积分10
6秒前
shi发布了新的文献求助10
7秒前
huhao完成签到,获得积分20
8秒前
13秒前
华仔应助huhao采纳,获得20
13秒前
16秒前
21秒前
21秒前
科研通AI5应助科研通管家采纳,获得30
21秒前
段段砖应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
天天快乐应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
英姑应助科研通管家采纳,获得10
22秒前
天天快乐应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
彭于晏应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
23秒前
Johnlian完成签到 ,获得积分10
25秒前
流氓恐龙完成签到,获得积分10
28秒前
huhao发布了新的文献求助20
28秒前
29秒前
victory_liu完成签到,获得积分10
29秒前
koukousang完成签到,获得积分10
30秒前
MMZMJY完成签到,获得积分10
30秒前
31秒前
张菁完成签到,获得积分10
33秒前
bosszjw发布了新的文献求助10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777790
求助须知:如何正确求助?哪些是违规求助? 3323297
关于积分的说明 10213693
捐赠科研通 3038552
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275