Domain adaptation and transfer learning for failure detection and failure-cause identification in optical networks across different lightpaths [Invited]

计算机科学 试验台 域适应 利用 鉴定(生物学) 领域(数学分析) 学习迁移 适应(眼睛) 人工智能 软件部署 机器学习 数据挖掘 计算机网络 计算机安全 光学 物理 操作系统 数学分析 分类器(UML) 生物 植物 数学
作者
Francesco Musumeci,Virajit Garbhapu Venkata,Yusuke Hirota,Yoshinari Awaji,Sugang Xu,Masaki Shiraiwa,Biswanath Mukherjee,Massimo Tornatore
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:14 (2): A91-A91 被引量:6
标识
DOI:10.1364/jocn.438269
摘要

Optical network failure management (ONFM) is a promising application of machine learning (ML) to optical networking. Typical ML-based ONFM approaches exploit historical monitored data, retrieved in a specific domain (e.g., a link or a network), to train supervised ML models and learn failure characteristics (a signature) that will be helpful upon future failure occurrence in that domain. Unfortunately, in operational networks, data availability often constitutes a practical limitation to the deployment of ML-based ONFM solutions, due to scarce availability of labeled data comprehensively modeling all possible failure types. One could purposely inject failures to collect training data, but this is time consuming and not desirable by operators. A possible solution is transfer learning (TL), i.e., training ML models on a source domain (SD), e.g., a laboratory testbed, and then deploying trained models on a target domain (TD), e.g., an operator network, possibly fine-tuning the learned models by re-training with few TD data. Moreover, in those cases when TL re-training is not successful (e.g., due to the intrinsic difference in SD and TD), another solution is domain adaptation, which consists of combining unlabeled SD and TD data before model training. We investigate domain adaptation and TL for failure detection and failure-cause identification across different lightpaths leveraging real optical SNR data. We find that for the considered scenarios, up to 20% points of accuracy increase can be obtained with domain adaptation for failure detection, while for failure-cause identification, only combining domain adaptation with model re-training provides significant benefit, reaching 4%–5% points of accuracy increase in the considered cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
2秒前
yufeng发布了新的文献求助10
2秒前
3秒前
峻逸忘幽完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
ztlooo完成签到,获得积分10
5秒前
危机的黑米完成签到,获得积分10
6秒前
ParagonWe发布了新的文献求助50
7秒前
张张zzz发布了新的文献求助10
7秒前
8秒前
Lucas应助桃花源的瓶起子采纳,获得10
9秒前
lizzy发布了新的文献求助10
9秒前
早睡y完成签到,获得积分10
9秒前
学术蝗虫完成签到,获得积分10
10秒前
郁离子完成签到 ,获得积分10
10秒前
隐形曼青应助好叭采纳,获得10
10秒前
积极台灯关注了科研通微信公众号
10秒前
12秒前
wentong完成签到,获得积分10
12秒前
lihaoyu发布了新的文献求助10
12秒前
zhairx完成签到,获得积分10
13秒前
ParagonWe完成签到,获得积分10
13秒前
优秀发布了新的文献求助10
14秒前
爆米花应助lizzy采纳,获得10
16秒前
joyceee完成签到,获得积分10
17秒前
英勇的柔发布了新的文献求助10
18秒前
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
23秒前
搜集达人应助QVQ采纳,获得10
24秒前
1202402077完成签到,获得积分10
24秒前
26秒前
27秒前
指已成殇完成签到,获得积分10
29秒前
程瑞哲发布了新的文献求助10
29秒前
Jasper应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461871
求助须知:如何正确求助?哪些是违规求助? 4566727
关于积分的说明 14307311
捐赠科研通 4492664
什么是DOI,文献DOI怎么找? 2461178
邀请新用户注册赠送积分活动 1450151
关于科研通互助平台的介绍 1425712