材料科学
复合材料
甲基丙烯酸缩水甘油酯
相间
环氧树脂
表面改性
共聚物
聚合物
化学工程
遗传学
生物
工程类
作者
Yanjia Zhang,Kangyi Lu,Mei He,Xiaobiao Zuo,Gang Li,Xiaoping Yang
标识
DOI:10.1021/acsami.1c14535
摘要
A rigid-and-flexible interphase was established by a starlike copolymer (Pc-PGMA/Pc) consisting of one tetraaminophthalocyanine (TAPc) core with four TAPc-difunctionalized poly(glycidyl methacrylate) (PGMA) arms through the surface modification of carbon fibers (CFs) and compared with various interphases constructed by TAPc and TAPc-connected PGMA (Pc-PGMA). The increase in the content of N-C═O showed that PGMA/Pc branches were successfully attached onto the CF-(Pc-PGMA/Pc) surface, exhibiting concavo-convex microstructures with the highest roughness. Through adhesive force spectroscopy by atomic force microscopy (AFM) with peak force quantitative nanomechanical mapping (PF-QNM) mode and visualization of the relative distribution of TAPc/PGMA via a Raman spectrometer, a rigid interphase with highly cross-linked TAPc and a flexible layer from PGMA arms as the soft segment were separately detected in CF-TAPc/EP and CF-(Pc-PGMA)/EP composites. The rigid-and-flexible interphase in the CF-(Pc-PGMA/Pc)/EP composite provided excellent stress-transfer capability by the rigid inner modulus intermediate layer and energy absorption efficiency from the flexible outer layer, which contributed to 64.6 and 61.8% increment of transverse fiber bundle test (TFBT) strength, and 33.8 and 40.6% enhancement in interfacial shear strength (IFSS) in comparison with those of CF-TAPc/EP and CF-(Pc-PGMA)/EP composites. Accordingly, schematic models of the interphase reinforcing mechanism were proposed. The interfacial failures in CF-TAPc/EP and CF-(Pc-PGMA)/EP composites were derived from the rigid interphase without effective relaxation of interfacial stress and soft interphase with excessive fiber-matrix interface slippage, respectively. The cohesive failure in the CF-(Pc-PGMA/Pc)/EP composite was attributed to the crack deflection through the balance of the modulus and deformability from the twin-stage gradient intermediate layer.
科研通智能强力驱动
Strongly Powered by AbleSci AI