Automatic recognition of tunnel lining elements from GPR images using deep convolutional networks with data augmentation

探地雷达 人工智能 卷积神经网络 深度学习 特征(语言学) 计算机科学 模式识别(心理学) 雷达 语言学 电信 哲学
作者
Hui Qin,Donghao Zhang,Yu Tang,Yuanzheng Wang
出处
期刊:Automation in Construction [Elsevier]
卷期号:130: 103830-103830 被引量:140
标识
DOI:10.1016/j.autcon.2021.103830
摘要

Tunnel lining inspection using ground penetrating radar (GPR) is a routine procedure to ensure construction quality. Yet, the interpretation of GPR data relies heavily on manual experience that may lead to low efficiency and recognition error when a large volume of data is involved. We introduced a deep learning-based automatic recognition method to identify tunnel lining elements, including steel ribs, voids, and initial linings from GPR images. Based on the mask region-based convolutional neural network (Mask R-CNN), this approach uses the 101-layer deep residual network (ResNet101) with the feature pyramid network (FPN) to extract features, the region proposal network (RPN) to generate candidate regions, a group of fully connected layers to detect the presence and locations of steel ribs and voids, and a fully convolutional network (FCN) to segment the area of the initial lining. To improve the recognition performance of the network, the finite-difference time-domain (FDTD) method and deep convolutional generative adversarial network (DCGAN) are employed to create synthetic GPR images for data augmentation. The test results on a synthetic example show that the mean absolute errors for steel rib, void, and initial lining thickness recognition are 1.2, 2.2, and 4.2 mm, respectively, demonstrating the feasibility of the recognition network. In a field GPR survey experiment, the recognition accuracies achieved 96.02%, 91.17%, and 95.45% for the three targets. With the optimal proportions of synthetic images added to the training dataset, the accuracies were further improved to 98.86%, 94.53%, and 99.27%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助自由迎曼采纳,获得10
1秒前
CodeCraft应助JYZ采纳,获得10
1秒前
Adenine完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
李健的小迷弟应助wowo采纳,获得10
3秒前
moon完成签到,获得积分10
3秒前
甜雨雨雨呀完成签到,获得积分10
5秒前
5秒前
O美眉完成签到,获得积分10
5秒前
5秒前
蒜苗发布了新的文献求助10
7秒前
7秒前
可爱的函函应助李西瓜采纳,获得10
7秒前
ash完成签到,获得积分10
7秒前
王雪晗发布了新的文献求助10
8秒前
Chen发布了新的文献求助10
8秒前
9秒前
9秒前
小菜发布了新的文献求助10
11秒前
彭于晏应助忧虑的香岚采纳,获得10
11秒前
orixero应助O美眉采纳,获得30
11秒前
heheheli完成签到,获得积分10
11秒前
压缩机发布了新的文献求助30
12秒前
13秒前
JamesPei应助李尚洁采纳,获得10
13秒前
赘婿应助三千采纳,获得30
13秒前
啊哈完成签到,获得积分20
14秒前
就这发布了新的文献求助10
15秒前
15秒前
Van完成签到,获得积分10
16秒前
16秒前
Ningxin发布了新的文献求助10
17秒前
悠悠发布了新的文献求助30
18秒前
xingxing发布了新的文献求助10
19秒前
20秒前
杜涵完成签到,获得积分10
20秒前
蒜苗完成签到,获得积分10
21秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621033
求助须知:如何正确求助?哪些是违规求助? 4705750
关于积分的说明 14933493
捐赠科研通 4764401
什么是DOI,文献DOI怎么找? 2551437
邀请新用户注册赠送积分活动 1513993
关于科研通互助平台的介绍 1474742