VPFNet: Improving 3D Object Detection With Virtual Point Based LiDAR and Stereo Data Fusion

点云 计算机科学 激光雷达 人工智能 计算机视觉 RGB颜色模型 像素 传感器融合 目标检测 点(几何) 分割 遥感 数学 几何学 地质学
作者
Hanqi Zhu,Jiajun Deng,Yu Zhang,Jianmin Ji,Qiuyu Mao,Houqiang Li,Yanyong Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 5291-5304 被引量:100
标识
DOI:10.1109/tmm.2022.3189778
摘要

It has been well recognized that fusing the complementary information from depth-aware LiDAR point clouds and semantic-rich stereo images would benefit 3D object detection. Nevertheless, it is non-trivial to explore the inherently unnatural interaction between sparse 3D points and dense 2D pixels. To ease this difficulty, the recent approaches generally project the 3D points onto the 2D image plane to sample the image data and then aggregate the data at the points. However, these approaches often suffer from the mismatch between the resolution of point clouds and RGB images, leading to sub-optimal performance. Specifically, taking the sparse points as the multi-modal data aggregation locations causes severe information loss for high-resolution images, which in turn undermines the effectiveness of multi-sensor fusion. In this paper, we present VPFNet —a new architecture that cleverly aligns and aggregates the point cloud and image data at the “virtual” points. Particularly, with their density lying between that of the 3D points and 2D pixels, the virtual points can nicely bridge the resolution gap between the two sensors, and thus preserve more information for processing. Moreover, we also investigate the data augmentation techniques that can be applied to both point clouds and RGB images, as the data augmentation has made non-negligible contribution towards 3D object detectors to date. We have conducted extensive experiments on KITTI dataset, and have observed good performance compared to the state-of-the-art methods. Remarkably, our VPFNet achieves 83.21% moderate $AP_{3D}$ and 91.86% moderate $AP_{BEV}$ on the KITTI test set. The network design also takes computation efficiency into consideration – we can achieve a FPS of 15 on a single NVIDIA RTX 2080Ti GPU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kay完成签到,获得积分20
1秒前
汪纯完成签到,获得积分10
1秒前
完美世界应助裴向雪采纳,获得30
2秒前
5秒前
羊村第一巴图鲁完成签到,获得积分10
5秒前
tataliza1完成签到,获得积分10
5秒前
斯文败类应助菜头采纳,获得20
6秒前
7秒前
孙燕应助seeking_paper采纳,获得20
9秒前
10秒前
11秒前
丘比特应助YooM采纳,获得10
11秒前
刻意完成签到,获得积分10
11秒前
12秒前
fffgz完成签到 ,获得积分10
14秒前
风中志泽发布了新的文献求助10
14秒前
14秒前
哈利波特完成签到,获得积分10
15秒前
16秒前
星辰大海应助1633采纳,获得10
16秒前
123wsq发布了新的文献求助10
16秒前
完美世界应助嗷嗷嗷采纳,获得10
18秒前
18秒前
小蘑菇应助刻意采纳,获得10
19秒前
谢小盟应助虚幻信封采纳,获得10
20秒前
求助文献发布了新的文献求助10
21秒前
22秒前
大大小完成签到,获得积分0
23秒前
24秒前
木头鱼发布了新的文献求助10
26秒前
高兴白山完成签到,获得积分10
26秒前
28秒前
nano完成签到 ,获得积分10
28秒前
11发布了新的文献求助10
31秒前
彭于晏应助Tomsen采纳,获得10
32秒前
黄小北发布了新的文献求助10
32秒前
33秒前
汉堡包应助朴素懿轩采纳,获得10
33秒前
janeZ完成签到,获得积分10
33秒前
wy.he应助霸气小懒虫采纳,获得10
33秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Beyond The Sentence: Discourse And Sentential Form 500
求 5G-Advanced NTN空天地一体化技术 pdf版 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4069819
求助须知:如何正确求助?哪些是违规求助? 3608783
关于积分的说明 11457900
捐赠科研通 3329173
什么是DOI,文献DOI怎么找? 1830091
邀请新用户注册赠送积分活动 900107
科研通“疑难数据库(出版商)”最低求助积分说明 819833