水位下降(水文)
文件夹
投资组合优化
优化算法
数学优化
进化算法
样品(材料)
计量经济学
数学
计算机科学
算法
经济
金融经济学
地质学
岩土工程
含水层
地下水
化学
色谱法
作者
Mikica Drenovak,Vladimir Ranković,Branko Urošević,Ranko Jelic
标识
DOI:10.1016/j.frl.2021.102328
摘要
We develop a novel Mean-Max Drawdown portfolio optimization approach using buy-and-hold portfolios. The optimization is performed utilizing a multi-objective evolutionary algorithm on a sample of S&P 100 constituents. Our optimization procedure provides portfolios with better Mean-Max Drawdown trade-offs compared to relevant benchmarks, regardless of the selected subsamples and market conditions. The superior performance of our approach is particularly pronounced in periods with reversing market trends (i.e. a market rally and a fall in the same subsample).
科研通智能强力驱动
Strongly Powered by AbleSci AI