Hyperspectral Image Classification Using Adaptive Weighted Quaternion Zernike Moments

高光谱成像 模式识别(心理学) 像素 人工智能 四元数 判别式 泽尼克多项式 上下文图像分类 计算机科学 数学 杂乱 计算复杂性理论 计算机视觉 图像(数学) 算法 雷达 物理 波前 光学 电信 几何学
作者
Huizhen Li,Hua Huang,Zhijing Ye,Hongfeng Li
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:70: 701-713 被引量:5
标识
DOI:10.1109/tsp.2022.3144954
摘要

Hyperspectral image classification (HSI) has been widely used in many fields. However, image noise, atmospheric conditions, material distribution and other factors seriously degrade the classification accuracy of HSIs. To alleviate these issues, a new approach, namely adaptive weighted quaternion Zernike moments (AWQZM), is proposed, which extracts effective spatial-spectral features for pixels in HSI classification. The main contributions and novelties of the method are as follows: 1) the AWQZM can adaptively set weights for each pixel in the neighborhood, which not only can flexibly search for homogeneous regions of HSIs, but also can strengthen the similarity of pixels from the same class and the distinctiveness of pixels from different classes; 2) the AWQZM can be constructed in a small subset of bands through a grouping strategy, thereby reducing the computational complexity; and 3) the introduction of quaternions can preserve the spatial correlation among bands and reduce the loss of data information, and the use of quaternion phase information makes the extracted features more informative and discriminative. Moreover, the spectral features and spatial features are combined to achieve better HSI classification results. Experimental results on three benchmark data sets demonstrate that the proposed approach achieves better classification performance than other related approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助彭佳丽采纳,获得10
1秒前
佟佳霖完成签到,获得积分10
1秒前
2秒前
yy发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
5秒前
yifei完成签到,获得积分10
6秒前
桐桐应助字符串采纳,获得10
6秒前
SYLH应助追寻紫安采纳,获得20
6秒前
橙子发布了新的文献求助10
6秒前
小脑阔发布了新的文献求助10
8秒前
李健应助专注的可乐采纳,获得10
8秒前
NICE完成签到,获得积分10
8秒前
lily完成签到,获得积分10
9秒前
9秒前
甜蜜的听荷完成签到,获得积分10
10秒前
LLL发布了新的文献求助10
10秒前
10秒前
科研通AI5应助刻苦的士萧采纳,获得30
10秒前
11秒前
JamesPei应助Zacwhay采纳,获得10
11秒前
Lucas应助夏菡采纳,获得80
11秒前
lijunlhc完成签到,获得积分10
11秒前
栗子完成签到,获得积分10
11秒前
杨旭发布了新的文献求助10
13秒前
上官若男应助小林采纳,获得10
14秒前
15秒前
15秒前
15秒前
dungaway发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
ylq发布了新的文献求助30
17秒前
斯文败类应助小张采纳,获得10
17秒前
17秒前
liyuemei发布了新的文献求助10
18秒前
无语啦发布了新的文献求助10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814803
求助须知:如何正确求助?哪些是违规求助? 3358942
关于积分的说明 10398561
捐赠科研通 3076361
什么是DOI,文献DOI怎么找? 1689802
邀请新用户注册赠送积分活动 813273
科研通“疑难数据库(出版商)”最低求助积分说明 767599