医学
质量保证
工作流程
医学物理学
工作量
文档
患者安全
成像体模
核医学
计算机科学
数据库
操作系统
病理
医疗保健
经济
经济增长
程序设计语言
外部质量评估
作者
Phillip Wall,Emily Hirata,Olivier Morin,Gilmer Valdés,Alon Witztum
标识
DOI:10.1016/j.ijrobp.2022.04.040
摘要
Performing measurement-based patient-specific quality assurance (PSQA) is recognized as a resource-intensive and time inefficient task in the radiation therapy treatment workflow. Paired with technological refinements in modern radiation therapy, research toward measurement-free PSQA has seen increased interest during the past 5 years. However, these efforts have not been clinically implemented or prospectively validated in the United States. We propose a virtual QA (VQA) system and workflow to assess the safety and workload reduction of measurement-free PSQA.An XGBoost machine learning model was designed to predict PSQA outcomes of volumetric modulated arc therapy plans, represented as percent differences between the measured ion chamber point dose in a phantom and the corresponding planned dose. The final model was deployed within a web application to predict PSQA outcomes of clinical plans within an existing clinical workflow. The application also displays relevant feature importance and plan-specific distribution analyses relative to database plans for documentation and to aid physicist interpretation and evaluation. VQA predictions were prospectively validated over 3 months of measurements at our clinic to assess safety and efficiency gains.Over 3 months, VQA predictions for 445 volumetric modulated arc therapy plans were prospectively validated at our institution. VQA predictions for these plans had a mean absolute error of 1.08% ± 0.77%, with a maximum absolute error of 2.98%. Using a 1% prediction threshold (ie, plans predicted to have an absolute error <1% would not require a measurement) would yield a 69.2% reduction in QA workload, saving 32.5 hours per month on average, with 81.5% sensitivity, 72.4% specificity, and an area under the curve of 0.81 at a 3% clinical threshold and 100% sensitivity, 70% specificity, and an area under the curve of 0.93 at a 4% clinical threshold.This is the first prospective clinical implementation and validation of VQA in the United States, which we observed to be efficient. Using a conservative threshold, VQA can substantially reduce the number of required measurements for PSQA, leading to more effective allocation of clinical resources.
科研通智能强力驱动
Strongly Powered by AbleSci AI