The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study

预言 计算机科学 数据挖掘 图形 人工智能 水准点(测量) 机器学习 理论计算机科学 大地测量学 地理
作者
Tianfu Li,Zheng Zhou,Sinan Li,Chuang Sun,Ruqiang Yan,Xuefeng Chen
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:168: 108653-108653 被引量:313
标识
DOI:10.1016/j.ymssp.2021.108653
摘要

Deep learning (DL)-based methods have advanced the field of Prognostics and Health Management (PHM) in recent years, because of their powerful feature representation ability. The data in PHM are typically regular data represented in the Euclidean space. Nevertheless, there are an increasing number of applications that consider the relationships and interdependencies of data and represent the data in the form of graphs. Such kind of irregular data in non-Euclidean space pose a huge challenge to the existing DL-based methods, making some important operations (e.g., convolutions) easily applied to Euclidean space but difficult to model graph data in non-Euclidean space. Recently, graph neural networks (GNNs), as the emerging neural networks, have been utilized to model and analyze the graph data. However, there still lacks a guideline on leveraging GNNs for realizing intelligent fault diagnostics and prognostics. To fill this research gap, a practical guideline is proposed in this paper, and a novel intelligent fault diagnostics and prognostics framework based on GNN is established to illustrate how the proposed guideline works. In this framework, three types of graph construction methods are provided, and seven kinds of graph convolutional networks (GCNs) with four different graph pooling methods are investigated. To afford benchmark results for helping further study, a comprehensive evaluation of these models is performed on eight datasets, including six fault diagnosis datasets and two prognosis datasets. Finally, four issues related to the performance of GCNs are discussed and potential research directions are provided. The code library is available at: https://github.com/HazeDT/PHMGNNBenchmark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bing完成签到 ,获得积分10
3秒前
gxmu6322完成签到,获得积分10
8秒前
77最可爱完成签到,获得积分10
10秒前
11秒前
雪白的冥幽完成签到,获得积分10
11秒前
14秒前
解觅荷发布了新的文献求助10
15秒前
深情夏彤完成签到,获得积分10
15秒前
77完成签到,获得积分10
19秒前
fangzhang发布了新的文献求助30
19秒前
zakai完成签到 ,获得积分10
21秒前
失眠的血茗完成签到,获得积分10
22秒前
呜啦啦啦完成签到,获得积分10
32秒前
杨春末完成签到,获得积分10
33秒前
长风完成签到,获得积分10
33秒前
34秒前
沐颜发布了新的文献求助10
35秒前
pzh完成签到 ,获得积分10
36秒前
Hello应助杨春末采纳,获得10
38秒前
李卿卫发布了新的文献求助10
41秒前
42秒前
胡图图完成签到,获得积分10
46秒前
崔同学发布了新的文献求助10
46秒前
雪狐417完成签到 ,获得积分10
46秒前
bill完成签到,获得积分10
46秒前
胡图图发布了新的文献求助20
49秒前
54秒前
过时的电灯胆完成签到 ,获得积分10
56秒前
笨笨芯发布了新的文献求助10
1分钟前
坚果完成签到 ,获得积分10
1分钟前
糖糖完成签到 ,获得积分10
1分钟前
李爱国应助小江采纳,获得10
1分钟前
虾米吃螃蟹完成签到,获得积分10
1分钟前
suix237完成签到,获得积分10
1分钟前
早早完成签到,获得积分10
1分钟前
乐乐应助fl采纳,获得10
1分钟前
张童鞋完成签到 ,获得积分10
1分钟前
1分钟前
fl完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776410
求助须知:如何正确求助?哪些是违规求助? 3321842
关于积分的说明 10208028
捐赠科研通 3037175
什么是DOI,文献DOI怎么找? 1666562
邀请新用户注册赠送积分活动 797579
科研通“疑难数据库(出版商)”最低求助积分说明 757872