亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study

预言 计算机科学 数据挖掘 图形 人工智能 水准点(测量) 机器学习 理论计算机科学 大地测量学 地理
作者
Tianfu Li,Zheng Zhou,Sinan Li,Chuang Sun,Ruqiang Yan,Xuefeng Chen
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:168: 108653-108653 被引量:383
标识
DOI:10.1016/j.ymssp.2021.108653
摘要

Deep learning (DL)-based methods have advanced the field of Prognostics and Health Management (PHM) in recent years, because of their powerful feature representation ability. The data in PHM are typically regular data represented in the Euclidean space. Nevertheless, there are an increasing number of applications that consider the relationships and interdependencies of data and represent the data in the form of graphs. Such kind of irregular data in non-Euclidean space pose a huge challenge to the existing DL-based methods, making some important operations (e.g., convolutions) easily applied to Euclidean space but difficult to model graph data in non-Euclidean space. Recently, graph neural networks (GNNs), as the emerging neural networks, have been utilized to model and analyze the graph data. However, there still lacks a guideline on leveraging GNNs for realizing intelligent fault diagnostics and prognostics. To fill this research gap, a practical guideline is proposed in this paper, and a novel intelligent fault diagnostics and prognostics framework based on GNN is established to illustrate how the proposed guideline works. In this framework, three types of graph construction methods are provided, and seven kinds of graph convolutional networks (GCNs) with four different graph pooling methods are investigated. To afford benchmark results for helping further study, a comprehensive evaluation of these models is performed on eight datasets, including six fault diagnosis datasets and two prognosis datasets. Finally, four issues related to the performance of GCNs are discussed and potential research directions are provided. The code library is available at: https://github.com/HazeDT/PHMGNNBenchmark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
10秒前
38秒前
科研通AI5应助XingRang采纳,获得10
44秒前
伊叶之丘完成签到 ,获得积分10
1分钟前
1分钟前
唐泽雪穗发布了新的文献求助70
1分钟前
1分钟前
1分钟前
Bob完成签到,获得积分10
1分钟前
胡瓜拌凉皮完成签到,获得积分10
1分钟前
慕青应助辣味锅包肉采纳,获得10
1分钟前
1分钟前
浮游应助辣味锅包肉采纳,获得10
1分钟前
yangshu发布了新的文献求助10
1分钟前
2分钟前
Kz发布了新的文献求助10
2分钟前
华仔应助Kz采纳,获得10
2分钟前
kklkimo完成签到,获得积分10
2分钟前
科研cc应助唐泽雪穗采纳,获得60
2分钟前
2分钟前
唐泽雪穗发布了新的文献求助60
3分钟前
童严柯完成签到,获得积分10
3分钟前
zy997987876应助童严柯采纳,获得20
3分钟前
zyjsunye完成签到 ,获得积分10
3分钟前
3分钟前
rio完成签到 ,获得积分10
3分钟前
3分钟前
浮游应助yangshu采纳,获得10
3分钟前
英俊的铭应助yangshu采纳,获得10
3分钟前
MchemG举报哈哈哈求助涉嫌违规
3分钟前
4分钟前
yangshu完成签到,获得积分10
4分钟前
XingRang发布了新的文献求助10
4分钟前
科研cc应助唐泽雪穗采纳,获得100
4分钟前
4分钟前
唐泽雪穗发布了新的文献求助100
4分钟前
lixuebin完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078338
求助须知:如何正确求助?哪些是违规求助? 4297112
关于积分的说明 13387869
捐赠科研通 4119800
什么是DOI,文献DOI怎么找? 2256288
邀请新用户注册赠送积分活动 1260569
关于科研通互助平台的介绍 1194176