Toward Open-World Electroencephalogram Decoding Via Deep Learning: A comprehensive survey

计算机科学 解码方法 脑电图 人工智能 深度学习 机器学习 语音识别 心理学 神经科学 电信
作者
Xun Chen,Chang Li,Aiping Liu,Martin J. McKeown,Ruobing Qian,Z. Jane Wang
出处
期刊:IEEE Signal Processing Magazine [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 117-134 被引量:65
标识
DOI:10.1109/msp.2021.3134629
摘要

Electroencephalogram (EEG) decoding aims to identify the perceptual, semantic, and cognitive content of neural processing based on non-invasively measured brain activity. Traditional EEG decoding methods have achieved moderate success when applied to data acquired in static, well-controlled lab environments. However, an open-world environment is a more realistic setting, where situations affecting EEG recordings can emerge unexpectedly, significantly weakening the robustness of existing methods. In recent years, deep learning (DL) has emerged as a potential solution for such problems due to its superior capacity in feature extraction. It overcomes the limitations of defining `handcrafted' features or features extracted using shallow architectures, but typically requires large amounts of costly, expertly-labelled data - something not always obtainable. Combining DL with domain-specific knowledge may allow for development of robust approaches to decode brain activity even with small-sample data. Although various DL methods have been proposed to tackle some of the challenges in EEG decoding, a systematic tutorial overview, particularly for open-world applications, is currently lacking. This article therefore provides a comprehensive survey of DL methods for open-world EEG decoding, and identifies promising research directions to inspire future studies for EEG decoding in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc应助archer01采纳,获得10
刚刚
Owen应助archer01采纳,获得10
刚刚
刚刚
刚刚
刚刚
dyuguo3完成签到 ,获得积分10
刚刚
王了了完成签到 ,获得积分10
1秒前
Meyako应助七盘西采纳,获得20
1秒前
1秒前
heysiri发布了新的文献求助30
2秒前
xbronx发布了新的文献求助10
3秒前
涛涛发布了新的文献求助10
4秒前
5秒前
大模型应助immoral采纳,获得10
5秒前
失眠百川完成签到 ,获得积分10
5秒前
田様应助hongyu采纳,获得10
6秒前
xyg发布了新的文献求助10
6秒前
魔幻千秋完成签到,获得积分0
7秒前
7秒前
科研通AI6应助小瓶采纳,获得50
8秒前
8秒前
脑洞疼应助wenjing采纳,获得10
9秒前
9秒前
坐等时光看轻自己完成签到,获得积分0
9秒前
轻云触月完成签到 ,获得积分10
10秒前
10秒前
情怀应助KEYAN采纳,获得10
10秒前
11秒前
Yang发布了新的文献求助10
12秒前
12秒前
12秒前
忆彡完成签到,获得积分10
13秒前
13秒前
13秒前
哎哟很烦完成签到,获得积分10
13秒前
13秒前
20150327完成签到,获得积分10
14秒前
爱学习的栋完成签到,获得积分10
14秒前
苗条的紫文完成签到,获得积分10
14秒前
Z趋势完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
A Practical Research Process for Developing a Sustainable Built Environment in Emerging Economies 200
Thermodynamics and kinetics of slip 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4363311
求助须知:如何正确求助?哪些是违规求助? 3863594
关于积分的说明 12049006
捐赠科研通 3506433
什么是DOI,文献DOI怎么找? 1923916
邀请新用户注册赠送积分活动 966197
科研通“疑难数据库(出版商)”最低求助积分说明 865561