Large variation existed in standardized mean difference estimates using different calculation methods in clinical trials

四分位间距 样本量测定 医学 严格标准化平均差 统计 临床试验 平均差 标准差 随机对照试验 人口学 核医学 置信区间 内科学 数学 社会学
作者
Yan Luo,Satoshi Funada,Katsukuni Yoshida,Hisashi Noma,Ethan Sahker,Toshi A Furukawa
出处
期刊:Journal of Clinical Epidemiology [Elsevier BV]
卷期号:149: 89-97 被引量:5
标识
DOI:10.1016/j.jclinepi.2022.05.023
摘要

Background and Objectives The standardized mean difference (SMD) can be calculated from different mean differences (MDs) and standard deviations (SDs). This study aims to investigate how clinical trials calculated, reported and interpreted the SMD, and to examine the variation between different SMDs. Methods We searched the PubMed for randomized controlled trials of general medicine and psychiatry that estimated SMDs. We explored how the SMD was computed and interpreted. We calculated SMDs based on different MDs and SDs, and the variation in these SMD estimates for each study. Results We included 161 articles. Various MDs and SDs were used to calculate SMDs, yet 69.0% studies failed to provide sufficient details. Variations in SMD estimates using different MDs and SDs in one study could be substantial (median of the absolute differences was 0.3, interquartile range IQR 0.17 to 0.53). However, 68.3% studies interpreted the SMD based on the same reference, Cohen's rule of thumb. The largest variations were observed in studies with small sample sizes and large reported effects. Conclusion SMDs using different MDs and SDs could vary considerably, but the report was often insufficient and the interpretation was oversimplified. To avoid selective reporting bias and misinterpretation, prespecifying and reporting the method and interpreting the result from multiple perspectives are desirable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助贺小刚采纳,获得10
刚刚
脑洞疼应助贺小刚采纳,获得10
刚刚
husaiao发布了新的文献求助10
刚刚
ziying126发布了新的文献求助10
刚刚
BxChen发布了新的文献求助10
1秒前
SciGPT应助大马哈鱼采纳,获得10
2秒前
彭于晏应助fzire3采纳,获得30
2秒前
yc发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
充电宝应助伶俐惜萱采纳,获得10
5秒前
爆米花应助言卓采纳,获得10
6秒前
大个应助xiaochai采纳,获得10
7秒前
大晨发布了新的文献求助10
8秒前
宋佳完成签到,获得积分10
8秒前
hode发布了新的文献求助10
8秒前
11发布了新的文献求助10
9秒前
永远55度应助邓可新采纳,获得50
10秒前
艾科研完成签到,获得积分10
10秒前
11秒前
12秒前
酷波er应助husaiao采纳,获得10
12秒前
12秒前
12秒前
一行数字完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
16秒前
洁JIE发布了新的文献求助10
17秒前
大马哈鱼发布了新的文献求助10
18秒前
zhzzhz应助TYJ采纳,获得10
18秒前
lizhiqian2024发布了新的文献求助10
18秒前
Tyler完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
鳎mu发布了新的文献求助10
20秒前
那地方发布了新的文献求助100
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787003
求助须知:如何正确求助?哪些是违规求助? 3332619
关于积分的说明 10256691
捐赠科研通 3047851
什么是DOI,文献DOI怎么找? 1672796
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271