Vessel deployment with limited information: Distributionally robust chance constrained models

软件部署 稳健优化 杠杆(统计) 计算机科学 模棱两可 数学优化 运筹学 稳健性(进化) 概率分布
作者
Yue Zhao,Zhi Chen,Andrew Lim,Zhenzhen Zhang
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:161: 197-217
标识
DOI:10.1016/j.trb.2022.05.006
摘要

This paper studies the fundamental vessel deployment problem in the liner shipping industry, which decides the numbers of mixed-type ships and their sailing frequencies on fixed routes to provide sufficient vessel capacity for fulfilling stochastic shipping demands with high probability. In reality, it is usually difficult (if not impossible) to acquire a precise joint distribution of shipping demands, as they may fluctuate heavily due to the fast-changing economic environment or unpredictable events. To address this challenge, we leverage recent advances in distributionally robust optimization and propose distribution-free robust joint chance constrained models. In the first model, we only assume support, mean as well as lower-order dispersion information of the shipping demands and provide high-quality solutions via a sequential convex optimization algorithm. Comparing with existing literature that chiefly studies individual chance constraints based on concentration inequalities and the union bound, our approach yields solutions that are less conservative and less vulnerable to the magnitude of demand dispersion. We also extend to a data-driven model based on the Wasserstein distance, which suits well in situations where limited historical demand samples are available. Our distributionally robust chance constrained models could serve as a baseline model for vessel deployment, into which we believe additional practical constraints could be incorporated seamlessly. • Distributionally robust joint chance constrained models for the vessel deployment problem. • Examples on the meaning and applications of the mean and dispersion ambiguity set in maritime industry. • Extensive experiments in data-driven setting. • More robust but less conservative deployment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
loka完成签到,获得积分10
刚刚
1秒前
研友_VZG7GZ应助Finger采纳,获得30
2秒前
清脆元冬发布了新的文献求助10
5秒前
7秒前
清爽冷风完成签到 ,获得积分10
8秒前
11秒前
西大喜完成签到,获得积分10
11秒前
15秒前
Miya完成签到 ,获得积分10
16秒前
Finger发布了新的文献求助30
17秒前
一二发布了新的文献求助10
18秒前
Abi完成签到,获得积分10
19秒前
清脆元冬完成签到,获得积分20
19秒前
随意完成签到,获得积分10
19秒前
20秒前
Fiee完成签到 ,获得积分10
20秒前
烦恼都走开完成签到,获得积分10
23秒前
wz87完成签到,获得积分10
24秒前
Lxxxxx完成签到,获得积分10
26秒前
26秒前
ke完成签到,获得积分20
26秒前
30秒前
ke发布了新的文献求助20
31秒前
vision发布了新的文献求助10
32秒前
不缺人YYDS发布了新的文献求助10
32秒前
shoplog发布了新的文献求助10
36秒前
ldk完成签到,获得积分10
39秒前
在吃饭的时候吃饭完成签到,获得积分10
41秒前
vision完成签到,获得积分10
42秒前
安静的火车完成签到,获得积分10
43秒前
华仔应助ke采纳,获得10
50秒前
shoplog完成签到,获得积分10
52秒前
Firstoronre完成签到,获得积分10
56秒前
碧阳的尔风完成签到,获得积分10
57秒前
所所应助科研通管家采纳,获得10
1分钟前
calemolet应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325220
关于积分的说明 10221927
捐赠科研通 3040359
什么是DOI,文献DOI怎么找? 1668771
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549