亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification method of vegetable diseases based on transfer learning and attention mechanism

鉴定(生物学) 学习迁移 人工智能 卷积神经网络 计算机科学 机器学习 模式识别(心理学) 生物 植物
作者
Xue Tong Zhao,Kaiyu Li,Yunxia Li,Juncheng Ma,Lingxian Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:193: 106703-106703 被引量:76
标识
DOI:10.1016/j.compag.2022.106703
摘要

Artificial Intelligence for disease identification is currently the focus of great research interest. Nonetheless, the approach has some problems, for example, identification takes a long time, has low accuracy, and is often limited to a single disease type. Here, we aimed to identify tomato powdery mildew, leaf mold and cucumber downy mildew against simple and complex backgrounds. We developed a vegetable disease identification model, DTL-SE-ResNet50, optimized by SENet and pre-trained by ImageNet to form a new model, SE-ResNet50. The SE-ResNet50 model was trained with the AI Challenger 2018 public database to obtain a new weight. The SE-ResNet50 model with the new weight was then trained by dual transfer learning with a self-built database to create the DTL-SE-ResNet50 model for the identification of vegetable diseases. The model was compared with convolutional neural networks EfficientNet, AlexNet, VGG19, and Inception V3. The experimental results showed that with the same experimental conditions, the identification precision of the new model reached 97.24%, and processing of a single image required 0.13 s. Compared with DTL-CBAM-ResNet50 and DTL-SA-ResNet50, three models has almost the same precision, but time consumption of DTL-SE-ResNet50 was 0.02 s higher than that of DTL-CBAM-ResNet50. Although the time consumption of DTL-SA-ResNet50 was 0.02 s higher than the proposed model, the precision was lower. At the same time, compared with the dual transfer learning model, the model’s precision was 4.1% higher, and the processing of a single image was 0.06 s shorter. Compared with convolutional neural networks, the precision of DTL-SE-ResNet50 was 3.19% higher than the best result, the time consumption of a single image was 0.58 s shorter; Recall and F1 also increased. The method proposed in this paper has high identification precision and short identification time, and it meets the requirements for accurate and rapid identification of vegetable diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一一发布了新的文献求助20
4秒前
华仔应助wz采纳,获得10
15秒前
28秒前
yain完成签到 ,获得积分10
28秒前
wz完成签到,获得积分10
39秒前
fabricio10完成签到,获得积分10
51秒前
哈哈哈哈或完成签到,获得积分20
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
一一完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
JamesPei应助满锅采纳,获得10
2分钟前
2分钟前
共享精神应助matrixu采纳,获得30
2分钟前
满锅发布了新的文献求助10
2分钟前
小六九完成签到 ,获得积分10
3分钟前
3分钟前
善学以致用应助叶凡采纳,获得30
3分钟前
邹醉蓝完成签到,获得积分0
3分钟前
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
3分钟前
Lucas应助淡淡十三采纳,获得10
3分钟前
莫春莹完成签到 ,获得积分10
3分钟前
3分钟前
淡淡十三发布了新的文献求助10
3分钟前
天天快乐应助淡淡十三采纳,获得10
4分钟前
4分钟前
4分钟前
叶凡发布了新的文献求助30
4分钟前
4分钟前
4分钟前
wubuking完成签到 ,获得积分10
4分钟前
matrixu发布了新的文献求助30
4分钟前
科研通AI2S应助叶凡采纳,获得10
4分钟前
科研废物完成签到,获得积分10
5分钟前
欢呼白容关注了科研通微信公众号
5分钟前
wukong完成签到,获得积分10
5分钟前
冷傲迎梅完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077640
求助须知:如何正确求助?哪些是违规求助? 4296671
关于积分的说明 13387255
捐赠科研通 4119172
什么是DOI,文献DOI怎么找? 2255766
邀请新用户注册赠送积分活动 1260104
关于科研通互助平台的介绍 1193513