High-Performance Polarization Remote Sensing With the Modified U-Net Based Deep-Learning Network

计算机科学 散射 遥感 极化(电化学) 深度学习 人工智能 模式识别(心理学) 光学 物理 地质学 物理化学 化学
作者
Dekui Li,Bing Lin,Xinyang Wang,Zhongyi Guo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-10 被引量:26
标识
DOI:10.1109/tgrs.2022.3164917
摘要

The existing scattering medium has a serious impact on the optical remote sensing. It is a challenge and urgent problem to extract the original target's information influenced by scattering systems. Here, we adopt the target's polarization information as the original data and load it into the modified U-net-based deep-learning network (MU-DLN) to retrieve the original target's information influenced by the scattering medium. The dense blocks in the MU-DLN can extract the features of the target information contained in the polarization images. Meanwhile, the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) have been used to evaluate the quality of target reconstruction. The experimental results show that our strategy can reconstruct the target's information very well, and the model trained for a fixed optical thickness (OT) environment can also be used for remote sensing in the larger or smaller OT environment within a certain range. In addition, due to the polarization imaging characteristics, compared with traditional methods, our strategy can improve the quality of target reconstruction effectively. Our work provides a new direction for DL technique in remote sensing of targets' information from the complex scattering systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
浮游应助吉文彬采纳,获得10
3秒前
3秒前
岁岁发布了新的文献求助30
4秒前
七慕凉应助科研通管家采纳,获得10
5秒前
维奈克拉应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
暮沐晓光发布了新的文献求助10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
Vivian应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得30
6秒前
18635986106应助科研通管家采纳,获得10
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Momomo应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
6秒前
英俊溪灵完成签到,获得积分10
9秒前
9秒前
Jasper应助点点点采纳,获得10
12秒前
lizzy完成签到,获得积分20
13秒前
14秒前
14秒前
panxixiang发布了新的文献求助10
15秒前
16秒前
阿拉丁完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
Legend完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493112
求助须知:如何正确求助?哪些是违规求助? 4591047
关于积分的说明 14433325
捐赠科研通 4523718
什么是DOI,文献DOI怎么找? 2478458
邀请新用户注册赠送积分活动 1463482
关于科研通互助平台的介绍 1436175