Countering Voltage Decay, Redox Sluggishness, and Calendering Incompatibility by Near‐Zero‐Strain Interphase in Lithium‐Rich, Manganese‐Based Layered Oxide Electrodes

材料科学 阴极 电化学 电解质 电极 相间 氧化物 锂(药物) 化学工程 复合材料 冶金 生物 工程类 内分泌学 物理化学 化学 医学 遗传学
作者
Weitao He,Chunxiao Zhang,Meiyu Wang,Bo Wei,Yuelei Zhu,Jianghua Wu,Chaoping Liang,Libao Chen,Peng Wang,Weifeng Wei
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (29) 被引量:34
标识
DOI:10.1002/adfm.202200322
摘要

Abstract Lithium‐rich, manganese‐based layered oxides are considered one of the most valuable cathode materials for the next generation of high‐energy density lithium‐ion batteries (LIBs) for their high specific capacity and low cost. However, their practical implementation in LIBs is hindered by the rapid voltage/capacity decay on cycling and the long‐standing contradictions between redox kinetics and volumetric energy density due to their poor calendaring compatibility. Herein, a coherent near‐zero‐strain interphase is constructed on the grain boundaries of cathode secondary particles by infusing LiAlO 2 material through the reactive infiltration method (RIM). Theoretical calculations, multi‐scale characterizations, and electrochemical tests show that this coherent interphase with near‐zero‐strain feature upon electrochemical (de)lithiation inhibits volume changes of the lattice and structural degradation of cathode primary particles during cycling. More importantly, the ionically conductive LiAlO 2 nanolayer infiltrated in the grain boundaries of cathode secondary particles can not only promote the rapid Li + migration and act as a barrier to protect the material from the corrosion of the electrolyte but also effectively improve the mechanical strength of the cathode secondary particles. Collectedly, the LiAlO 2 ‐infiltrated cathode materials display superior electrochemical cyclability, enhanced rate capability, and industrial calendaring performance, marking a significant step toward commercial implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho发布了新的文献求助10
刚刚
刚刚
略略略完成签到,获得积分10
刚刚
QL完成签到,获得积分10
刚刚
1秒前
3秒前
乐观文龙关注了科研通微信公众号
5秒前
暮雪云烟发布了新的文献求助10
10秒前
11秒前
pluto应助雨季佯采纳,获得10
14秒前
WHHW发布了新的文献求助10
16秒前
深情安青应助ycw123采纳,获得10
22秒前
22秒前
桐桐应助科研通管家采纳,获得10
23秒前
顾矜应助科研通管家采纳,获得30
23秒前
英姑应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
大模型应助科研通管家采纳,获得30
23秒前
烟花应助科研通管家采纳,获得20
23秒前
无曲应助科研通管家采纳,获得10
23秒前
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
无花果应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
七慕凉应助科研通管家采纳,获得10
23秒前
Rage_Wang应助科研通管家采纳,获得20
23秒前
CipherSage应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
皮肤科应助科研通管家采纳,获得20
24秒前
科研通AI5应助科研通管家采纳,获得30
24秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
24秒前
orixero应助科研通管家采纳,获得10
24秒前
刚刚好发布了新的文献求助30
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776812
求助须知:如何正确求助?哪些是违规求助? 3322237
关于积分的说明 10209395
捐赠科研通 3037506
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976