PCA-Based Edge-Preserving Features for Hyperspectral Image Classification

人工智能 高光谱成像 模式识别(心理学) 主成分分析 平滑的 支持向量机 像素 计算机视觉 计算机科学 分类器(UML) 特征提取 数学
作者
Xudong Kang,Xuanlin Xiang,Shutao Li,Jón Atli Benediktsson
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:55 (12): 7140-7151 被引量:327
标识
DOI:10.1109/tgrs.2017.2743102
摘要

Edge-preserving features (EPFs) obtained by the application of edge-preserving filters to hyperspectral images (HSIs) have been found very effective in characterizing significant spectral and spatial structures of objects in a scene. However, a direct use of the EPFs can be insufficient to provide a complete characterization of spatial information when objects of different scales are present in the considered images. Furthermore, the edge-preserving smoothing operation unavoidably decreases the spectral differences among objects of different classes, which may affect the following classification. To overcome these problems, in this paper, a novel principal component analysis (PCA)-based EPFs (PCA-EPFs) method for HSI classification is proposed, which consists of the following steps. First, the standard EPFs are constructed by applying edge-preserving filters with different parameter settings to the considered image, and the resulting EPFs are stacked together. Next, the spectral dimension of the stacked EPFs is reduced with the PCA, which not only can represent the EPFs in the mean square sense but also highlight the separability of pixels in the EPFs. Finally, the resulting PCA-EPFs are classified by a support vector machine (SVM) classifier. Experiments performed on several real hyperspectral data sets show the effectiveness of the proposed PCA-EPFs, which sharply improves the accuracy of the SVM classifier with respect to the standard edge-preserving filtering-based feature extraction method, and other widely used spectral-spatial classifiers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柏林发布了新的文献求助10
1秒前
神勇的代荷完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
传奇3应助科研通管家采纳,获得20
6秒前
慕青应助科研通管家采纳,获得10
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
oboy应助科研通管家采纳,获得10
6秒前
Orange应助Cheryy采纳,获得10
6秒前
孙燕应助科研通管家采纳,获得10
6秒前
yznfly应助科研通管家采纳,获得30
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
oboy应助科研通管家采纳,获得10
6秒前
jin完成签到,获得积分20
7秒前
8秒前
li关闭了li文献求助
9秒前
10秒前
11秒前
12秒前
momi发布了新的文献求助10
14秒前
思源应助孙成成采纳,获得10
14秒前
14秒前
朝阳CAAS完成签到 ,获得积分10
15秒前
ccy发布了新的文献求助10
16秒前
研友_VZG7GZ应助大二郎采纳,获得10
19秒前
Cheryy发布了新的文献求助10
20秒前
冰魂应助Bazinga采纳,获得100
21秒前
梅子酒完成签到,获得积分20
23秒前
qian发布了新的文献求助10
24秒前
852应助ccy采纳,获得10
25秒前
英俊的铭应助司徒无剑采纳,获得10
25秒前
沉静道罡完成签到,获得积分10
27秒前
27秒前
量子星尘发布了新的文献求助10
30秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867145
求助须知:如何正确求助?哪些是违规求助? 3409400
关于积分的说明 10663430
捐赠科研通 3133586
什么是DOI,文献DOI怎么找? 1728284
邀请新用户注册赠送积分活动 832879
科研通“疑难数据库(出版商)”最低求助积分说明 780510