材料科学
热导率
纳米复合材料
复合材料
剥脱关节
高密度聚乙烯
超临界流体
聚合物纳米复合材料
微观结构
聚合物
石墨烯
聚乙烯
纳米技术
有机化学
化学
作者
Mahdi Hamidinejad,Raymond Chu,Biao Zhao,Chul Park,Tobin Filleter
标识
DOI:10.1021/acsami.7b15170
摘要
As electronic devices become increasingly miniaturized, their thermal management becomes critical. Efficient heat dissipation guarantees their optimal performance and service life. Graphene nanoplatelets (GnPs) have excellent thermal properties that show promise for use in fabricating commercial polymer nanocomposites with high thermal conductivity. Herein, an industrially viable technique for manufacturing a new class of lightweight GnP-polymer nanocomposites with high thermal conductivity is presented. Using this method, GnP-high-density polyethylene (HDPE) nanocomposites with a microcellular structure are fabricated by melt mixing, which is followed by supercritical fluid (SCF) treatment and injection molding foaming, which adds an extra layer of design flexibility. Thus, the microstructure is tailored within the nanocomposites and this improves their thermal conductivity. Therefore, the SCF-treated HDPE 17.6 vol % GnP microcellular nanocomposites have a solid-phase thermal conductivity of 4.13 ± 0.12 W m-1 K-1. This value far exceeds that of their regular injection-molded counterparts (2.09 ± 0.03 W m-1 K-1) and those reported in the literature. This dramatic improvement results from in situ GnPs' exfoliation and dispersion, and from an elevated level of random orientation and interconnectivity. Thus, this technique provides a novel approach to the development of microscopically tailored structures for the production of lighter and more thermally conductive heat sinks for next generations of miniaturized electronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI