材料科学
光催化
石墨氮化碳
氮化碳
可见光谱
光子晶体
光电子学
氮化物
光子学
纳米技术
碳纤维
复合材料
催化作用
复合数
化学
生物化学
图层(电子)
作者
Lu Sun,Wei Hong,Jing Liu,Meijia Yang,Wensheng Lin,Guojian Chen,Dingshan Yu,Xudong Chen
标识
DOI:10.1021/acsami.7b14359
摘要
Highly cross-linked graphitic carbon nitride has been prepared by a thermal copolymerization of dicyanodiamide with tetramethylammonium salts. The cross-linking can be evidenced by (i) increased C/N ratio without new carbon species, (ii) decreased specific surface area, and (iii) Tyndall effect after dissolution in concentrated sulfuric acid. The cross-linked graphitic carbon nitride with photonic crystal structure has highly efficient photocatalytic activity for water splitting under visible light due to the synergistic enhancement by the greatly suppressed photoluminescence, red-shifted absorption edges, strong inner reflections, and effective PCs stop band overlaps. It exhibits an enhanced photodegradation kinetic of methyl orange and a high visible-light-driven hydrogen-evolution rate of 166.9 μmol h-1 (25 times higher than that of the pristine graphitic carbon nitride counterpart). This work presents a facile method for designing and developing high-performance graphitic carbon nitride photocatalysts, providing a broad range of application prospects in the fields of electronics and energy conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI