An open access database for the evaluation of heart sound algorithms

声音(地理) 计算机科学 数据库 算法 语音识别 声学 物理
作者
Chengyu Liu,David Springer,Qiao Li,Benjamin Moody,Ricardo Abad Juan,Francisco J. Chorro,Francisco Castells,José Millet,Ikaro Silva,Alistair E. W. Johnson,Zeeshan Syed,Samuel Emil Schmidt,Chrysa D. Papadaniil,Leontios J. Hadjileontiadis,H. Naseri,Ali Moukadem,Alain Dieterlen,Christian Brandt,Hong Tang,Maryam Samieinasab
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:37 (12): 2181-2213 被引量:691
标识
DOI:10.1088/0967-3334/37/12/2181
摘要

In the past few decades, analysis of heart sound signals (i.e. the phonocardiogram or PCG), especially for automated heart sound segmentation and classification, has been widely studied and has been reported to have the potential value to detect pathology accurately in clinical applications. However, comparative analyses of algorithms in the literature have been hindered by the lack of high-quality, rigorously validated, and standardized open databases of heart sound recordings. This paper describes a public heart sound database, assembled for an international competition, the PhysioNet/Computing in Cardiology (CinC) Challenge 2016. The archive comprises nine different heart sound databases sourced from multiple research groups around the world. It includes 2435 heart sound recordings in total collected from 1297 healthy subjects and patients with a variety of conditions, including heart valve disease and coronary artery disease. The recordings were collected from a variety of clinical or nonclinical (such as in-home visits) environments and equipment. The length of recording varied from several seconds to several minutes. This article reports detailed information about the subjects/patients including demographics (number, age, gender), recordings (number, location, state and time length), associated synchronously recorded signals, sampling frequency and sensor type used. We also provide a brief summary of the commonly used heart sound segmentation and classification methods, including open source code provided concurrently for the Challenge. A description of the PhysioNet/CinC Challenge 2016, including the main aims, the training and test sets, the hand corrected annotations for different heart sound states, the scoring mechanism, and associated open source code are provided. In addition, several potential benefits from the public heart sound database are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
期待完成签到,获得积分10
刚刚
刚刚
dududu完成签到,获得积分10
1秒前
2秒前
小周发布了新的文献求助10
2秒前
woo发布了新的文献求助10
2秒前
33A2D17发布了新的文献求助10
3秒前
李健应助成就的迎夏采纳,获得10
3秒前
3秒前
怕孤独的香蕉完成签到,获得积分10
3秒前
4秒前
柒柒发布了新的文献求助10
4秒前
4秒前
Bing发布了新的文献求助10
5秒前
6秒前
lab完成签到 ,获得积分0
6秒前
7秒前
bolan发布了新的文献求助10
7秒前
烟花应助乔乔兔采纳,获得10
7秒前
8秒前
9秒前
Yusuf发布了新的文献求助10
9秒前
9秒前
LEEGAN发布了新的文献求助10
9秒前
英姑应助好好学习采纳,获得10
10秒前
10秒前
惊鸿客应助问雁采纳,获得10
10秒前
10秒前
ganchao1776完成签到,获得积分10
11秒前
11秒前
Ds应助小刘很怕忙采纳,获得10
11秒前
发财小鱼发布了新的文献求助10
11秒前
Grace完成签到,获得积分10
11秒前
12秒前
罪狐发布了新的文献求助10
12秒前
搜集达人应助mt采纳,获得10
12秒前
12秒前
doudoulong发布了新的文献求助10
12秒前
学术妲己完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5086374
求助须知:如何正确求助?哪些是违规求助? 4302147
关于积分的说明 13406829
捐赠科研通 4127297
什么是DOI,文献DOI怎么找? 2260275
邀请新用户注册赠送积分活动 1264492
关于科研通互助平台的介绍 1198653