作者
Mohamed Nabil,Dina H. Kassem,Azza A. Ali,Hala O. El‐Mesallamy
摘要
Alzheimer's disease (AD) is a complex form of neurodegenerative dementia. Growing body of evidence supports the cardinal role of sirtuin1 (SIRT1) in neurodegeneration and AD development. Recently, adipose tissue-derived mesenchymal stem cells (Ad-MSCs) have made their mark for a wide array of regenerative medicine applications, including neurodegenerative disorders. Therefore, the present study aimed to investigate the therapeutic potential of Ad-MSCs in AD rat model, and to explore the possible implication of SIRT1. Ad-MSCs were isolated from rat epididymal fat pads and properly characterized. Aluminum chloride was used to induce AD in rats, and afterward, a group of AD-induced rats received a single dose of Ad-MSCs (2 × 106 cell, I.V per rat). One month after Ad-MSCs transplantation, behavioral tests were done, brain tissues were collected, then histopathological and biochemical assessments were performed. Amyloid beta and SIRT1 levels were determined by enzyme-linked immunosorbent assay. Whereas expression levels of neprilysin, BCL2 associated X protein, B-cell lymphoma-2, interleukin-1β, interleukin-6, and nerve growth factor in hippocampus and frontal cortex brain tissues were assessed using reverse transcriptase quantitative polymerase chain reaction. Our data demonstrated that transplantation of Ad-MSCs alleviated cognitive impairment in AD rats. Additionally, they exhibited anti-amyloidogenic, antiapoptotic, anti-inflammatory, as well as neurogenic effects. Furthermore, Ad-MSCs were found to possibly mediate their therapeutic effects, at least partially, via modulating both central and systemic SIRT1 levels. Hence, the current study portrays Ad-MSCs as an effective therapeutic approach for AD management and opens the door for future investigations to further elucidate the role of SIRT1 and its interrelated molecular mediators in AD.