Transfer learning based heart valve disease classification from Phonocardiogram signal

心音图 计算机科学 学习迁移 信号(编程语言) 模式识别(心理学) 人工智能 语音识别 内科学 医学 心脏病学 程序设计语言
作者
Arnab Maity,Akanksha Pathak,Goutam Saha
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:85: 104805-104805 被引量:27
标识
DOI:10.1016/j.bspc.2023.104805
摘要

Physiological conditions that prevent heart valves from functioning precisely to ensure proper blood circulation are known as heart valve disorder (HVD). Detection of HVD is critical as untreated heart valve disease often develops life-threatening cardiac diseases. Typical HVD detection methods, like echocardiography, MRI, and cardiac CT, are costly, complex, and require robust healthcare infrastructure. Although, by simple non-invasive listening to heart sound irregularities, an expert physician can anticipate the signs of HVD from ancient times. Contemporary development suggests that with machine learning-based algorithms, a graphical representation of heart sound, known as the phonocardiogram (PCG), can effectively predict the anomaly in the valvular activity. In recent studies, deep learning-based strategies showed promising results in the PCG classification task but demand extensive resources and training data. This work investigates the merits of transfer learning (TL) using pre-trained convolution neural networks for the automatic PCG classification when data is scarce. With standard time–frequency representations (i.e., spectrogram, log-Mel spectrogram, and scalogram) as input features, audio and image-based pre-trained lightweight models are fine-tuned to categorize the PCG. The proposed YAMNet-based TL method classifies four types of HVD data collected from public heart sound databases and achieves overall accuracy, sensitivity, and specificity of 99.83%, 99.59%, and 99.90%, respectively. Alongside, it classifies the PhysioNet/CinC Challenge 2016 dataset into binary classes with 92.23% accuracy. The study achieves high classification metrics despite data scarcity. It also investigates the proposed method’s computational efficiency and robustness against practical noise contamination for performance evaluation in a possible real-life scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Aixia完成签到,获得积分10
2秒前
3秒前
共享精神应助专注的语堂采纳,获得10
3秒前
淡然白安发布了新的文献求助10
5秒前
5秒前
宋泽艺完成签到 ,获得积分10
6秒前
6秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
shanage应助科研通管家采纳,获得10
7秒前
shanage应助科研通管家采纳,获得10
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
小悦悦完成签到 ,获得积分10
8秒前
Junsir发布了新的文献求助10
9秒前
9秒前
搜集达人应助ComeOn采纳,获得10
9秒前
建志给建志的求助进行了留言
9秒前
安心发布了新的文献求助10
10秒前
勇敢的小狗完成签到 ,获得积分10
10秒前
科研混子完成签到,获得积分10
11秒前
11秒前
可爱问夏发布了新的文献求助10
12秒前
SciGPT应助猪猪hero采纳,获得10
15秒前
甘木鸣发布了新的文献求助10
16秒前
w1x2123完成签到,获得积分10
17秒前
1213完成签到 ,获得积分10
17秒前
18秒前
满意花卷完成签到 ,获得积分10
21秒前
23秒前
24秒前
hubo完成签到,获得积分20
28秒前
听曲散步完成签到,获得积分10
28秒前
康复小白完成签到 ,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776393
求助须知:如何正确求助?哪些是违规求助? 3321780
关于积分的说明 10207833
捐赠科研通 3037129
什么是DOI,文献DOI怎么找? 1666541
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757870