Strengthening evolution-based differential evolution with prediction strategy for multimodal optimization and its application in multi-robot task allocation

局部最优 计算机科学 数学优化 差异进化 任务(项目管理) 趋同(经济学) 人工智能 数学 工程类 经济 系统工程 经济增长
作者
Hong Zhao,Lin Tang,Jia Rui Li,Jing Liu
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:139: 110218-110218 被引量:12
标识
DOI:10.1016/j.asoc.2023.110218
摘要

Many real-world problems can be considered multimodal optimization problems (MMOPs), which require locating as many global optima as possible and refining the accuracy of the found optima as high as possible. However, there are some issues with existing algorithms for solving MMOPs. For instance, most of the existing methods adopt the greedy selection strategy to select offspring, which may lead some individuals to fall into local optima and the repetitive evaluations for these local optima will exhaust many fitness evaluations (FEs). Moreover, many MMOPs tend to be expensive to evaluate, and the rational allocation of evaluation resources to better deal with MMOPs is a critical challenge within a limited number of FEs. How to allocate FEs reasonably in a whole evolution and how to avoid individuals becoming trapped in local optima are two key problems in solving MMOPs. Therefore, this paper proposes a strengthening evolution-based differential evolution with prediction strategy (SEDE-PS) for solving MMOPs and verifies its performance in a multirobot task allocation (MRTA) problem, which has the following three contributions. First, a neighbour-based evolution prediction (NEP) strategy is proposed to predict the position of individuals in the next generation by using the historical information of individuals as much as possible. Second, a prediction-based mutation (PM) strategy is introduced to accelerate convergence by combining it with the NEP strategy. Third, a strengthening evolution (SE) strategy is proposed to select inferior individuals to evolve them unconditionally several times and make them approach global optima or jump out of local optima. We compare the SEDE-PS with state-of-the-art multimodal optimization algorithms on the widely used CEC’2013 benchmark. The experimental results show that SEDE-PS performs better than, or is competitive with these compared algorithms. Moreover, SEDE-PS is applied to a real-world MRTA problem to further verify the effectiveness of SEDE-PS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助初亦非采纳,获得10
刚刚
Leon完成签到 ,获得积分0
刚刚
刚刚
iNk应助猛犸象冲冲冲采纳,获得10
1秒前
田様应助体贴的青烟采纳,获得10
1秒前
1秒前
Nicole完成签到 ,获得积分10
2秒前
2秒前
坚强馒头完成签到,获得积分20
2秒前
Ggs发布了新的文献求助50
2秒前
鱼蛋丸子完成签到,获得积分10
2秒前
小蘑菇应助清辉夜凝采纳,获得10
3秒前
3秒前
俊逸的若剑完成签到 ,获得积分10
3秒前
卷王完成签到,获得积分10
3秒前
不摇头的向日葵完成签到,获得积分10
3秒前
单薄惜文发布了新的文献求助10
4秒前
奋斗初南完成签到,获得积分10
4秒前
完美世界应助huhu采纳,获得10
4秒前
4秒前
yoyo20012623完成签到,获得积分10
4秒前
Ava应助猫里小七采纳,获得10
5秒前
CC完成签到,获得积分10
5秒前
Gino完成签到,获得积分10
5秒前
微笑小熊猫完成签到 ,获得积分10
5秒前
DAI完成签到,获得积分10
5秒前
5秒前
5秒前
小小邹发布了新的文献求助10
5秒前
妖精完成签到 ,获得积分10
5秒前
小熙完成签到 ,获得积分10
5秒前
33完成签到,获得积分10
6秒前
搜集达人应助落桑采纳,获得10
6秒前
杨怡诗发布了新的文献求助10
6秒前
吾将上下而求索完成签到,获得积分10
7秒前
ding应助野原小龙虾采纳,获得10
7秒前
WYX完成签到 ,获得积分10
7秒前
Alice完成签到,获得积分10
7秒前
7秒前
天才瞳瞳完成签到 ,获得积分10
7秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792875
求助须知:如何正确求助?哪些是违规求助? 3337413
关于积分的说明 10285064
捐赠科研通 3054136
什么是DOI,文献DOI怎么找? 1675825
邀请新用户注册赠送积分活动 803795
科研通“疑难数据库(出版商)”最低求助积分说明 761561