Machine learning-based risk prediction model construction of difficult weaning in ICU patients with mechanical ventilation

机械通风 断奶 重症监护医学 急诊医学 通风(建筑) 计算机科学 医学 麻醉 内科学 工程类 机械工程
作者
Huimei Xu,Han Ma,Yan Zhuang,Yanqi Zheng,Zhiqiang Du,Xuemei Zhou
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-71548-3
摘要

In intensive care unit (ICU) patients undergoing mechanical ventilation (MV), the occurrence of difficult weaning contributes to increased ventilator-related complications, prolonged hospitalization duration, and a significant rise in healthcare costs. Therefore, early identification of influencing factors and prediction of patients at risk of difficult weaning can facilitate early intervention and preventive measures. This study aimed to strengthen airway management for ICU patients by constructing a risk prediction model with comprehensive and individualized offline programs based on machine learning techniques. This study involved the collection of data from 487 patients undergoing MV in the ICU, with a total of 36 variables recorded. The dataset was divided into a training set (70% of the data) and a test set (30% of the data). Five machine learning models, namely logistic regression, random forest, support vector machine, light gradient boosting machine, and extreme gradient boosting, were compared to predict the risk of difficult weaning in ICU patients with MV. Significant influencing factors were identified based on the results of these models, and a risk prediction model for ICU patients with MV was established. When evaluating the models using AUC (Area under the Curve of ROC) and Accuracy as performance metrics, the Random Forest algorithm exhibited the best performance among the five machine learning algorithms. The area under the operating characteristic curve for the subjects was 0.805, with an accuracy of 0.748, recall (0.888), specificity (0.767) and F1 score (0.825). This study successfully developed a risk prediction model for ICU patients with MV using a machine learning algorithm. The Random Forest algorithm demonstrated the highest prediction performance. These findings can assist clinicians in accurately assessing the risk of difficult weaning in patients and formulating effective individualized treatment plans. Ultimately, this can help reduce the risk of difficult weaning and improve the quality of life for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cwm发布了新的文献求助10
刚刚
haha发布了新的文献求助10
1秒前
2秒前
聪慧的远山完成签到,获得积分10
2秒前
lmc发布了新的文献求助10
2秒前
隐形曼青应助顺心的皓轩采纳,获得10
3秒前
nono完成签到,获得积分10
3秒前
3秒前
今后应助迅哥采纳,获得10
4秒前
4秒前
星辰大海应助ZYQ采纳,获得10
4秒前
852应助土豆大王采纳,获得10
5秒前
5秒前
时米米米完成签到,获得积分10
6秒前
6秒前
Shawn发布了新的文献求助10
6秒前
Ye发布了新的文献求助10
8秒前
Lumen完成签到 ,获得积分20
8秒前
9秒前
平淡的盼兰完成签到,获得积分10
9秒前
doocan发布了新的文献求助10
9秒前
小熊发布了新的文献求助10
10秒前
张琦发布了新的文献求助10
10秒前
andrele发布了新的文献求助30
10秒前
川川完成签到 ,获得积分20
10秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
自然夏槐应助科研通管家采纳,获得10
11秒前
段盼兰应助科研通管家采纳,获得20
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
CodeCraft应助研友_8QQlD8采纳,获得10
12秒前
12秒前
情怀应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得30
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
司徒文青应助科研通管家采纳,获得30
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794928
求助须知:如何正确求助?哪些是违规求助? 3339887
关于积分的说明 10297885
捐赠科研通 3056485
什么是DOI,文献DOI怎么找? 1677034
邀请新用户注册赠送积分活动 805104
科研通“疑难数据库(出版商)”最低求助积分说明 762333