BIF-Net: Boundary information fusion network for abdominal aortic aneurysm segmentation

腹主动脉瘤 分割 人工智能 边界(拓扑) 计算机科学 融合 医学 放射科 动脉瘤 计算机视觉 数学 数学分析 语言学 哲学
作者
Mingyu Wan,Jing Zhu,Yue Che,Xiran Cao,Xiao Han,Xinhui Si,Wei Wang,Chang Shu,Mingyao Luo,Xuelan Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:183: 109191-109191
标识
DOI:10.1016/j.compbiomed.2024.109191
摘要

The accurate abdominal aortic aneurysm (AAA) segmentation is significant for assisting clinicians in diagnosis and treatment planning. However, existing segmentation methods exhibit a low utilization rate for the semantic information of vessel boundaries, which is disadvantageous for segmenting AAA with significant scale variability of vessel diameter (diameter ranges from 4 mm to 85 mm). To tackle this problem, we introduce a boundary information fusion network (BIF-Net) specially designed for AAA segmentation. BIF-Net initially constructs convolutional kernel functions based on Gabor and Sobel operators, enriching the global semantic features and localization information through the Gabor and Sobel dilated convolution (GSDC) module. Additionally, BIF-Net supplements lost boundary feature information during the sampling process through the guided filtering feature supplementation (GFFS) module and the channel-spatial attention module (CSAM), enhancing the ability to capture targets with shape diversity and boundary features. Finally, we introduce a boundary feature loss function to alleviate the impact of the imbalance between positive and negative samples. The results demonstrate that BIF-Net outperforms current state-of-the-art methods across multiple evaluation metrics, achieving the highest Dice similarity coefficient (DSC) accuracies of 93.29 % and 91.01 % on the preoperative and postoperative datasets, respectively. Compared to the state-of-the-art methods, BIF-Net improves DSC by 6.86 % and 3.85 %. Due to the powerful boundary feature extraction ability, the proposed BIF-Net is a competitive AAA segmentation method exhibiting significant potential for application in diagnosis and treatment processes of AAA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Xiaoxiao应助纯真若菱采纳,获得10
2秒前
菜一完成签到,获得积分20
2秒前
4秒前
5秒前
DDZZ完成签到,获得积分20
6秒前
苏州河发布了新的文献求助10
7秒前
安静牛排发布了新的文献求助10
9秒前
10秒前
北海未暖完成签到,获得积分10
10秒前
11秒前
ShiRz发布了新的文献求助10
11秒前
11秒前
xx发布了新的文献求助30
14秒前
14秒前
董咚咚发布了新的文献求助10
15秒前
15秒前
李科研发布了新的文献求助10
15秒前
研友_ZegWmL发布了新的文献求助10
18秒前
18秒前
19秒前
优雅代玉发布了新的文献求助10
19秒前
19秒前
22秒前
爆米花应助李科研采纳,获得10
22秒前
22秒前
22秒前
科目三应助理查德采纳,获得10
23秒前
文右三发布了新的文献求助10
24秒前
善学以致用应助xx采纳,获得10
25秒前
25秒前
xiaixax发布了新的文献求助10
25秒前
王金娥发布了新的文献求助10
27秒前
赵康康发布了新的文献求助20
29秒前
江蓠虽晚完成签到 ,获得积分10
29秒前
NexusExplorer应助chemhub采纳,获得100
31秒前
32秒前
等待的忆枫应助lizhaonian采纳,获得10
32秒前
32秒前
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787836
求助须知:如何正确求助?哪些是违规求助? 3333486
关于积分的说明 10261926
捐赠科研通 3049234
什么是DOI,文献DOI怎么找? 1673459
邀请新用户注册赠送积分活动 801949
科研通“疑难数据库(出版商)”最低求助积分说明 760428