Multi-modality deep learning prediction of heart age: insights from UK-Biobank

医学 生命银行 模态(人机交互) 重症监护医学 人工智能 生物信息学 计算机科学 生物
作者
George C.M. Siontis,Alan Le Goallec,Jean-Baptiste Prost,Solène Collin,Samuel Diai,Trina Vincent,Chirag J. Patel
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1) 被引量:1
标识
DOI:10.1093/eurheartj/ehae666.3442
摘要

Abstract Background Identification of apparently healthy individuals at high cardiovascular risk who may benefit from targeted preventive strategies remains challenging. Predicted heart age, the chronological age of individuals with similar absolute cardiovascular disease (CVD) risk but with no risk factors, has been proposed to appropriately describe the absolute CVD risk over conventional prediction tools. Purpose To develop multi-modality based deep learning predictors for heart age in UK-Biobank individuals. Methods We used deep learning to develop a heart age predictor based on videos from heart magnetic resonance imaging (MRI) (anatomical dimension), electrocardiograms (ECG) (electrical dimension) or both from 45000 individuals of the UK Biobank cohort (age range 45-81 years) (Figure). We estimated the heritability of heart aging and identified single-nucleotide polymorphisms associated with accelerated heart aging. We performed X-wide association study to identify non-genetic factors potentially associated with accelerated heart aging. Results We predicted age with a mean absolute error (MAE) of 2.5±0.03 years (R2=85.6±0.6%) and found that accelerated heart aging is heritable at more than 35%. MRI-based anatomical features predicted age better than ECG-based electro-physiological features (MAE=2.29±0.03 years versus 4.90±.0.08 years), and heart anatomical and electrical aging were weakly correlated (Pearson correlation=0.249±0.002). Our attention maps highlighted the aorta, the mitral valve, and the interventricular septum as key anatomical features driving heart age prediction in videos that capture the entire heartbeat cycle. We found accelerated anatomical and electrical heart aging to be genetically correlated (Pearson correlation=0.508±0.089). The most significant locus was in TTN (Titin) and it was associated with heart anatomical aging. Cardiovascular diseases, general health status, and mental health disorders were highly associated with accelerated heart aging. Conclusions A multi-modality based deep learning approach was highly predictive of heart age. Accelerated heart age has a complex biological basis with genetic and environmental correlates. Leveraging of the described pipeline to predict survival and the onset of age-related cardiovascular diseases may shed light on heart aging role in health outcomes and effectively guide personalized preventive strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杰杰发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
忧郁的猕猴桃完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
zgsjymysmyy发布了新的文献求助10
5秒前
zyd完成签到,获得积分10
6秒前
Hello应助杰杰采纳,获得10
6秒前
之外发布了新的文献求助10
7秒前
8秒前
9秒前
Goodenough完成签到,获得积分10
10秒前
爆米花应助悦耳的城采纳,获得10
10秒前
11秒前
或无情完成签到 ,获得积分10
13秒前
14秒前
jiujiuhuang发布了新的文献求助10
14秒前
15秒前
共享精神应助zgsjymysmyy采纳,获得10
15秒前
Dobronx03发布了新的文献求助10
16秒前
feifeizi发布了新的文献求助10
17秒前
英吉利25发布了新的文献求助10
18秒前
美满的手链关注了科研通微信公众号
20秒前
21秒前
幸运小怪兽完成签到,获得积分10
21秒前
22秒前
23秒前
23秒前
斯文败类应助feifeizi采纳,获得10
23秒前
26秒前
26秒前
竹焚完成签到 ,获得积分10
28秒前
28秒前
28秒前
ping发布了新的文献求助10
29秒前
王旭发布了新的文献求助10
31秒前
32秒前
量子星尘发布了新的文献求助10
33秒前
桐桐应助周钰波采纳,获得30
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4215355
求助须知:如何正确求助?哪些是违规求助? 3749739
关于积分的说明 11794775
捐赠科研通 3415738
什么是DOI,文献DOI怎么找? 1874466
邀请新用户注册赠送积分活动 928547
科研通“疑难数据库(出版商)”最低求助积分说明 837695