导线
模型预测控制
运动规划
障碍物
计算机科学
地形
方案(数学)
避障
前馈
控制器(灌溉)
机器人
路径(计算)
控制工程
步行机器人
控制(管理)
控制理论(社会学)
人工智能
工程类
移动机器人
生态学
数学分析
农学
程序设计语言
数学
大地测量学
政治学
法学
生物
地理
作者
Maximilian Albracht,Shivesh Kumar,Shubham Vyas,Frank Kirchner
出处
期刊:IEEE robotics and automation letters
日期:2024-08-19
卷期号:9 (10): 8507-8514
标识
DOI:10.1109/lra.2024.3445668
摘要
A great advantage of legged robots is their ability to operate on particularly difficult and obstructed terrain, which demands dynamic, robust, and precise movements. The study of obstacle courses provides invaluable insights into the challenges legged robots face, offering a controlled environment to assess and enhance their capabilities. Traversing it with a one-legged hopper introduces intricate challenges, such as planning over contacts and dealing with flight phases, which necessitates a sophisticated controller. A novel model predictive parkour controller is introduced, that finds an optimal path through a real-time changing obstacle course with mixed integer motion planning. The execution of this optimized path is then achieved through a state machine employing a PD control scheme with feedforward torques, ensuring robust and accurate performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI