Multi-Granularity Part Sampling Attention for Fine-Grained Visual Classification

判别式 粒度 计算机科学 过度拟合 人工智能 特征(语言学) 模式识别(心理学) 目标检测 采样(信号处理) 计算机视觉 数据挖掘 机器学习 人工神经网络 哲学 操作系统 滤波器(信号处理) 语言学
作者
Jiahui Wang,Qin Xu,Bo Jiang,Bin Luo,Jinhui Tang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4529-4542 被引量:4
标识
DOI:10.1109/tip.2024.3441813
摘要

Fine-grained visual classification aims to classify similar sub-categories with the challenges of large variations within the same sub-category and high visual similarities between different sub-categories. Recently, methods that extract semantic parts of the discriminative regions have attracted increasing attention. However, most existing methods extract the part features via rectangular bounding boxes by object detection module or attention mechanism, which makes it difficult to capture the rich shape information of objects. In this paper, we propose a novel Multi-Granularity Part Sampling Attention (MPSA) network for fine-grained visual classification. First, a novel multi-granularity part retrospect block is designed to extract the part information of different scales and enhance the high-level feature representation with discriminative part features of different granularities. Then, to extract part features of various shapes at each granularity, we propose part sampling attention, which can sample the implicit semantic parts on the feature maps comprehensively. The proposed part sampling attention not only considers the importance of sampled parts but also adopts the part dropout to reduce the overfitting issue. In addition, we propose a novel multi-granularity fusion method to highlight the foreground features and suppress the background noises with the assistance of the gradient class activation map. Experimental results demonstrate that the proposed MPSA achieves state-of-the-art performance on four commonly used fine-grained visual classification benchmarks. The source code is publicly available at https://github.com/mobulan/MPSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chewy完成签到 ,获得积分10
1秒前
1秒前
ding应助sss采纳,获得10
1秒前
1秒前
领导范儿应助尊敬寒松采纳,获得10
3秒前
4秒前
NICKPLZ完成签到,获得积分10
4秒前
香蕉幻珊应助一条大盒盒采纳,获得10
5秒前
5秒前
kathy发布了新的文献求助10
6秒前
川ccc发布了新的文献求助100
6秒前
huiZ发布了新的文献求助10
7秒前
Muran完成签到,获得积分0
7秒前
scot完成签到,获得积分0
7秒前
在水一方应助负责的念柏采纳,获得10
7秒前
科目三应助CYQ采纳,获得10
8秒前
爆爆发布了新的文献求助20
12秒前
ding应助爱睡觉的宝宝采纳,获得10
13秒前
jenningseastera应助nooraa采纳,获得10
13秒前
SONG完成签到,获得积分10
14秒前
14秒前
17秒前
jenningseastera应助一一采纳,获得10
17秒前
17秒前
大模型应助扶光采纳,获得10
18秒前
18秒前
7XM完成签到,获得积分10
18秒前
尊敬寒松发布了新的文献求助10
20秒前
自由的月饼关注了科研通微信公众号
20秒前
JiaxiJie发布了新的文献求助10
21秒前
sss发布了新的文献求助10
23秒前
23秒前
JOY完成签到 ,获得积分10
23秒前
24秒前
24秒前
kathy完成签到,获得积分10
24秒前
conghuang完成签到,获得积分10
25秒前
香槟问题发布了新的文献求助10
25秒前
25秒前
高分求助中
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4453987
求助须知:如何正确求助?哪些是违规求助? 3920318
关于积分的说明 12167260
捐赠科研通 3570728
什么是DOI,文献DOI怎么找? 1961163
邀请新用户注册赠送积分活动 1000439
科研通“疑难数据库(出版商)”最低求助积分说明 895312