Predicting tissue distribution and tumor delivery of nanoparticles in mice using machine learning models

纳米颗粒 分布(数学) 计算机科学 人工智能 纳米技术 材料科学 数学 数学分析
作者
Kun Mi,Wei‐Chun Chou,Qiran Chen,Long Yuan,V. Kamineni,Yashas Kuchimanchi,Chunla He,Nancy A. Monteiro‐Riviere,Jim E. Riviere,Zhoumeng Lin
出处
期刊:Journal of Controlled Release [Elsevier]
卷期号:374: 219-229 被引量:42
标识
DOI:10.1016/j.jconrel.2024.08.015
摘要

Nanoparticles (NPs) can be designed for targeted delivery in cancer nanomedicine, but the challenge is a low delivery efficiency (DE) to the tumor site. Understanding the impact of NPs' physicochemical properties on target tissue distribution and tumor DE can help improve the design of nanomedicines. Multiple machine learning and artificial intelligence models, including linear regression, support vector machine, random forest, gradient boosting, and deep neural networks (DNN), were trained and validated to predict tissue distribution and tumor delivery based on NPs' physicochemical properties and tumor therapeutic strategies with the dataset from Nano-Tumor Database. Compared to other machine learning models, the DNN model had superior predictions of DE to tumors and major tissues. The determination coefficients (R2) for the test datasets were 0.41, 0.42, 0.45, 0.79, 0.87, and 0.83 for DE in tumor, heart, liver, spleen, lung, and kidney, respectively. All the R2 and root mean squared error (RMSE) results of the test datasets were similar to the 5-fold cross validation results. Feature importance analysis showed that the core material of NPs played an important role in output predictions among all physicochemical properties. Furthermore, multiple NP formulations with greater DE to the tumor were determined by the DNN model. To facilitate model applications, the final model was converted to a web dashboard. This model could serve as a high-throughput pre-screening tool to support the design of new and efficient nanomedicines with greater tumor DE and serve as an alternative tool to reduce, refine, and partially replace animal experimentation in cancer nanomedicine research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我爱吃糯米团子完成签到,获得积分10
刚刚
ntxlks完成签到,获得积分10
1秒前
冷静灵竹发布了新的文献求助30
1秒前
科研通AI2S应助Bressanone采纳,获得10
1秒前
金甲狮王发布了新的文献求助10
1秒前
mumuaidafu完成签到 ,获得积分10
1秒前
Echo1128完成签到 ,获得积分10
1秒前
哈基咪完成签到 ,获得积分10
1秒前
小小木木发布了新的文献求助10
1秒前
2秒前
书祝完成签到,获得积分10
2秒前
科研小白完成签到,获得积分10
3秒前
华仔完成签到 ,获得积分10
3秒前
3秒前
Mexsol完成签到,获得积分10
3秒前
3秒前
研友_7ZebY8完成签到,获得积分10
4秒前
4秒前
lienafeihu发布了新的文献求助30
4秒前
NicheFactor完成签到,获得积分10
4秒前
abab小王完成签到,获得积分10
4秒前
5秒前
王宇完成签到,获得积分10
5秒前
所所应助Su采纳,获得10
5秒前
宣以晴完成签到,获得积分10
6秒前
6秒前
Dsivan完成签到,获得积分10
6秒前
6秒前
specium完成签到,获得积分10
6秒前
CodeCraft应助研友_LwbYv8采纳,获得10
7秒前
沉静念烟完成签到,获得积分10
7秒前
8秒前
研友_LN32Mn发布了新的文献求助10
8秒前
NicheFactor发布了新的文献求助10
8秒前
小马发布了新的文献求助10
8秒前
123456应助lmr采纳,获得20
9秒前
wawawa发布了新的文献求助10
9秒前
9秒前
打败王旭完成签到,获得积分10
9秒前
玄金道人完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707284
求助须知:如何正确求助?哪些是违规求助? 5182600
关于积分的说明 15249122
捐赠科研通 4860640
什么是DOI,文献DOI怎么找? 2608747
邀请新用户注册赠送积分活动 1559662
关于科研通互助平台的介绍 1517481