Improvements to a Crucial Budyko-Fu Parameter and Evapotranspiration Estimates via Vegetation Optical Depth over the Yellow River Basin

蒸散量 环境科学 分水岭 归一化差异植被指数 植被(病理学) 水文学(农业) 构造盆地 降水 流域 气候变化 地质学 生态学 气象学 地理 地貌学 机器学习 海洋学 生物 病理 医学 地图学 岩土工程 计算机科学
作者
Xingyi Wang,Jiaxin Jin
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (15): 2777-2777 被引量:1
标识
DOI:10.3390/rs16152777
摘要

Against the backdrop of global warming and vegetation restoration, research on the evapotranspiration mechanism of the Yellow River basin has become a hot topic. The Budyko-Fu model is widely used to estimate basin-scale evapotranspiration, and its crucial parameter ω is used to characterize the underlying surface and climate characteristics of different basins. However, most studies only use factors such as the normalized difference vegetation index (NDVI), which represents the greenness of vegetation, to quantify the relationship between ω and the underlying surface, thereby neglecting richer vegetation information. In this study, we used long time-series multi-source remote sensing data from 1988 to 2015 and stepwise regression to establish dynamic estimation models of parameter ω for three subwatersheds of the upper Yellow River and quantify the contribution of underlying surface factors and climate factors to this parameter. In particular, vegetation optical depth (VOD) was introduced to represent plant biomass to improve the applicability of the model. The results showed that the dynamic estimation models of parameter ω established for the three subwatersheds were reasonable (R2 = 0.60, 0.80, and 0.40), and parameter ω was significantly correlated with the VOD and standardized precipitation evapotranspiration index (SPEI) in all watersheds. The dominant factors affecting the parameter in the different subwatersheds also differed, with underlying surface factors mainly affecting the parameter in the watershed before Longyang Gorge (BLG) (contributing 64% to 76%) and the watershed from Lanzhou to Hekou Town (LHT) (contributing 63% to 83%) and climate factors mainly affecting the parameter in the watershed from Longyang Gorge to Lanzhou (LGL) (contributing 75% to 93%). The results of this study reveal the changing mechanism of evapotranspiration in the Yellow River watershed and provide an important scientific basis for regional water balance assessment, global change response, and sustainable development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
和平完成签到 ,获得积分10
5秒前
七人七发布了新的文献求助10
6秒前
念辞完成签到 ,获得积分10
8秒前
9秒前
温柔觅松完成签到 ,获得积分10
12秒前
七人七发布了新的文献求助10
14秒前
LEU完成签到,获得积分10
14秒前
17秒前
cdercder应助科研通管家采纳,获得10
21秒前
isedu完成签到,获得积分10
22秒前
七人七发布了新的文献求助10
23秒前
27秒前
搜集达人应助啊咧采纳,获得10
32秒前
32秒前
七人七发布了新的文献求助10
33秒前
哈拉斯完成签到,获得积分10
35秒前
38秒前
熊雅完成签到,获得积分10
38秒前
42秒前
完美世界应助陈秋采纳,获得10
42秒前
七人七发布了新的文献求助10
44秒前
xiaoxioayixi完成签到 ,获得积分10
44秒前
wishe完成签到,获得积分10
45秒前
感动依霜完成签到 ,获得积分10
48秒前
热心雪一完成签到 ,获得积分10
50秒前
kaka发布了新的文献求助10
50秒前
细心可乐完成签到 ,获得积分10
52秒前
科研通AI5应助七人七采纳,获得10
56秒前
1分钟前
Worenxian完成签到,获得积分10
1分钟前
1分钟前
LEU发布了新的文献求助10
1分钟前
王佳豪完成签到,获得积分10
1分钟前
1分钟前
七人七发布了新的文献求助10
1分钟前
1分钟前
panpan完成签到,获得积分10
1分钟前
suiwuya完成签到,获得积分10
1分钟前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Multivariate Models and Multivariate Dependence Concepts 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830521
求助须知:如何正确求助?哪些是违规求助? 3372816
关于积分的说明 10475500
捐赠科研通 3092653
什么是DOI,文献DOI怎么找? 1702254
邀请新用户注册赠送积分活动 818839
科研通“疑难数据库(出版商)”最低求助积分说明 771101