材料科学
聚乙烯醇
吸附
静电纺丝
化学工程
朗缪尔吸附模型
复合数
纳米纤维
分散剂
阳离子聚合
复合材料
聚合物
高分子化学
色散(光学)
有机化学
化学
工程类
物理
光学
作者
Badr M. Thamer,Faiz A. Al‐aizari,Hany S. Abdo,Mohamed H. El‐Newehy
摘要
Abstract In this study, chromium‐based metal–organic framework (MIL‐101(Cr)) was incorporated into polyvinyl alcohol nanofibers (PVA NFs) via green electrospinning followed by heat treatment to fabricate MIL‐101(Cr)@PVA NFs composite without the need for any organic solvent or other dispersants. The fabricated MIL‐101(Cr)@PVA NFs were comprehensively characterized using a suite of common techniques. Morphological characteristics of MIL‐101(Cr)@PVA NFs showed a fibrous structure with an average diameter of 228 ± 37 nm and decorated with MIL‐101(Cr) particles arranged in a nanoneedle‐like pattern. Subsequently, its adsorption efficiency towards the cationic crystal violet dye (CV) was evaluated through batch adsorption experiments. The influence of various experimental parameters on CV removal efficiency was systematically optimized using a factorial design approach. The Langmuir isotherm and kinetic pseudo‐second‐order (PSO) model provided an excellent fit to the adsorption equilibrium data, indicating a maximum adsorption capacity ( q max ) of 344.18 mg/g for MIL‐101(Cr)@PVA NFs compared with 83.94 mg/g for pristine PVA NFs. Furthermore, the MIL‐101(Cr)@PVA NFs composite demonstrated excellent reusability and stability, maintaining a significant portion of its removal capacity even after six adsorption–desorption cycles. These findings highlight the potential of the fabricated composite as a highly efficient and reusable adsorbent for CV removal from wastewater treatment applications. Highlights The MIL‐101(Cr)@PVA NFs nanocomposite fabricated by electrospinning technique. The MIL‐101(Cr) particle arranged in a nanoneedle‐like pattern in the PVA NFs. Incorporation of MIL‐101(Cr) improved q max of PVA by 391.5%. The MIL‐101(Cr)@PVA NFs membrane has excellent stability and reusability.
科研通智能强力驱动
Strongly Powered by AbleSci AI