Mamba- and ResNet-Based Dual-Branch Network for Ultrasound Thyroid Nodule Segmentation

增采样 计算机科学 分割 人工智能 卷积神经网络 背景(考古学) 结核(地质) 模式识别(心理学) 甲状腺结节 计算机视觉 甲状腺 图像(数学) 医学 生物 内科学 古生物学
作者
Min Hu,Y Zhang,Huijun Xue,Hao Lv,Shipeng Han
出处
期刊:Bioengineering [MDPI AG]
卷期号:11 (10): 1047-1047 被引量:7
标识
DOI:10.3390/bioengineering11101047
摘要

Accurate segmentation of thyroid nodules in ultrasound images is crucial for the diagnosis of thyroid cancer and preoperative planning. However, the segmentation of thyroid nodules is challenging due to their irregular shape, blurred boundary, and uneven echo texture. To address these challenges, a novel Mamba- and ResNet-based dual-branch network (MRDB) is proposed. Specifically, the visual state space block (VSSB) from Mamba and ResNet-34 are utilized to construct a dual encoder for extracting global semantics and local details, and establishing multi-dimensional feature connections. Meanwhile, an upsampling–convolution strategy is employed in the left decoder focusing on image size and detail reconstruction. A convolution–upsampling strategy is used in the right decoder to emphasize gradual feature refinement and recovery. To facilitate the interaction between local details and global context within the encoder and decoder, cross-skip connection is introduced. Additionally, a novel hybrid loss function is proposed to improve the boundary segmentation performance of thyroid nodules. Experimental results show that MRDB outperforms the state-of-the-art approaches with DSC of 90.02% and 80.6% on two public thyroid nodule datasets, TN3K and TNUI-2021, respectively. Furthermore, experiments on a third external dataset, DDTI, demonstrate that our method improves the DSC by 10.8% compared to baseline and exhibits good generalization to clinical small-scale thyroid nodule datasets. The proposed MRDB can effectively improve thyroid nodule segmentation accuracy and has great potential for clinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZIJUNZHAO完成签到 ,获得积分10
刚刚
NexusExplorer应助悦悦采纳,获得10
1秒前
1秒前
2秒前
Chaimengdi发布了新的文献求助10
3秒前
木昆完成签到 ,获得积分10
3秒前
4秒前
缓慢冷风完成签到,获得积分10
4秒前
4秒前
猎豹猎豹跑得快完成签到,获得积分20
5秒前
5秒前
眭超阳完成签到 ,获得积分10
5秒前
5秒前
李垣锦完成签到,获得积分10
5秒前
草壁米完成签到,获得积分10
6秒前
WanHaiiiYan发布了新的文献求助10
6秒前
缓慢冷风发布了新的文献求助10
7秒前
AJY发布了新的文献求助10
8秒前
8秒前
李爱国应助咩咩采纳,获得10
9秒前
kai完成签到,获得积分10
9秒前
10秒前
Pp发布了新的文献求助10
10秒前
搜集达人应助Chaimengdi采纳,获得10
11秒前
科研通AI6应助杨明智采纳,获得10
12秒前
able完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
顾矜应助jxr采纳,获得10
14秒前
14秒前
Orange应助正常采纳,获得10
14秒前
14秒前
搜集达人应助缓慢冷风采纳,获得10
15秒前
16秒前
17秒前
jinyu发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
Jasper应助杨院采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420777
求助须知:如何正确求助?哪些是违规求助? 4535755
关于积分的说明 14151514
捐赠科研通 4452650
什么是DOI,文献DOI怎么找? 2442416
邀请新用户注册赠送积分活动 1433847
关于科研通互助平台的介绍 1410975