Multi-omics Graph Knowledge Representation for Pneumonia Prognostic Prediction

计算机科学 图形 肺炎 代表(政治) 人工智能 数据挖掘 医学 理论计算机科学 内科学 政治 政治学 法学
作者
Wenyu Xing,Miao Li,Yiwen Liu,Xin Liu,Yifang Li,Yanping Yang,Jing Bi,Jiangang Chen,Dongni Hou,Yuanlin Song,Dean Ta
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3488735
摘要

Early prognostic prediction is crucial for determining appropriate clinical interventions. Previous single-omics models had limitations, such as high contingency and overlooking complex physical conditions. In this paper, we introduced multi-omics graph knowledge representation to predict in-hospital outcomes for pneumonia patients. This method utilizes CT imaging and three non-imaging omics information, and explores a knowledge graph for modeling multi-omics relations to enhance the overall information representation. For imaging omics, a multichannel pyramidal recursive MLP and Longformer-based 3D deep learning module was developed to extract depth features in lung window, while radiomics features were simultaneously extracted in both lung and mediastinal windows. Non-imaging omics involved the adoption of laboratory, microbial, and clinical indices to complement the patient's physical condition. Following feature screening, the similarity fusion network and graph convolutional network (GCN) were employed to determine omics similarity and provide prognostic prediction. The results of comparative experiments and generalization validation demonstrat that the proposed multi-omics GCN-based prediction model has good robustness and outperformed previous single-type omics, classical machine learning, and previous deep learning methods. Thus, the proposed multi-omics graph knowledge representation model enhances early prognostic prediction performance in pneumonia, facilitating a comprehensive assessment of disease severity and timely intervention for high-risk patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dmr完成签到,获得积分10
1秒前
llll完成签到 ,获得积分10
2秒前
jason0023完成签到,获得积分10
3秒前
student完成签到 ,获得积分10
4秒前
QAQSS完成签到 ,获得积分10
5秒前
安澜完成签到,获得积分10
5秒前
hsrlbc完成签到,获得积分10
7秒前
仁爱的觅夏完成签到,获得积分10
7秒前
外向白开水完成签到 ,获得积分10
7秒前
7秒前
HONGYE完成签到 ,获得积分10
11秒前
Aurora的努力日记完成签到,获得积分10
13秒前
在我梦里绕完成签到,获得积分10
15秒前
楚寅完成签到 ,获得积分10
15秒前
16秒前
IP190237完成签到,获得积分0
19秒前
sunce1990完成签到 ,获得积分10
20秒前
cdercder应助kingwill采纳,获得30
20秒前
20秒前
Zz完成签到 ,获得积分10
21秒前
zzf发布了新的文献求助10
22秒前
衡玉完成签到 ,获得积分10
24秒前
霓娜酱完成签到 ,获得积分10
24秒前
偏翩发布了新的文献求助10
25秒前
谨慎秋珊完成签到 ,获得积分10
26秒前
song完成签到 ,获得积分10
27秒前
surfer363完成签到,获得积分10
28秒前
able完成签到 ,获得积分10
29秒前
清秀龙猫完成签到 ,获得积分10
30秒前
31秒前
小九完成签到,获得积分10
31秒前
和谐的映梦完成签到,获得积分10
32秒前
等待的幼晴完成签到,获得积分10
32秒前
Jerry完成签到,获得积分10
33秒前
33秒前
风趣霆完成签到,获得积分10
35秒前
爱学习的瑞瑞子完成签到 ,获得积分10
37秒前
杨小王发布了新的文献求助10
38秒前
ly完成签到,获得积分10
38秒前
40秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808162
求助须知:如何正确求助?哪些是违规求助? 3352796
关于积分的说明 10360441
捐赠科研通 3068787
什么是DOI,文献DOI怎么找? 1685259
邀请新用户注册赠送积分活动 810410
科研通“疑难数据库(出版商)”最低求助积分说明 766108